cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Scale.tex

46 lines
1.4 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d::Scale}
\ccDefinition
Given a constant $c$ this \ccc{AdaptableBinaryFunction} scales a
\ccc{PolynomialTraits_d::Polynomial_d} $p$ with respect to one variable, that is,
it computes $p(c\cdot x)$.
Note that this functor operates on the polynomial in the univariate view, that is,
the polynomial is considered as a univariate polynomial in one specific variable.
\ccRefines
\ccc{AdaptableBinaryFunction}\\
\ccc{CopyConstructible}\\
\ccc{DefaultConstructible}\\
\ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{fo}
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}
\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient_type second_argument_type;}{}
\ccOperations
\ccMethod{result_type operator()(first_argument_type p,
second_argument_type c);}
{ Returns $p(c\cdot x)$, with respect to the outermost variable. }
\ccMethod{result_type operator()(first_argument_type p,
second_argument_type c,
int i);}
{ Same as first operator but for variable $x_i$.
\ccPrecond $0 \leq i < d$
}
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\end{ccRefConcept}