mirror of https://github.com/CGAL/cgal
46 lines
1.4 KiB
TeX
46 lines
1.4 KiB
TeX
\begin{ccRefConcept}{PolynomialTraits_d::Scale}
|
|
\ccDefinition
|
|
|
|
|
|
Given a constant $c$ this \ccc{AdaptableBinaryFunction} scales a
|
|
\ccc{PolynomialTraits_d::Polynomial_d} $p$ with respect to one variable, that is,
|
|
it computes $p(c\cdot x)$.
|
|
|
|
Note that this functor operates on the polynomial in the univariate view, that is,
|
|
the polynomial is considered as a univariate polynomial in one specific variable.
|
|
|
|
\ccRefines
|
|
\ccc{AdaptableBinaryFunction}\\
|
|
\ccc{CopyConstructible}\\
|
|
\ccc{DefaultConstructible}\\
|
|
|
|
\ccTypes
|
|
|
|
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
|
|
\ccCreationVariable{fo}
|
|
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue
|
|
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}
|
|
\ccGlue
|
|
\ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient_type second_argument_type;}{}
|
|
|
|
\ccOperations
|
|
\ccMethod{result_type operator()(first_argument_type p,
|
|
second_argument_type c);}
|
|
{ Returns $p(c\cdot x)$, with respect to the outermost variable. }
|
|
\ccMethod{result_type operator()(first_argument_type p,
|
|
second_argument_type c,
|
|
int i);}
|
|
{ Same as first operator but for variable $x_i$.
|
|
\ccPrecond $0 \leq i < d$
|
|
}
|
|
|
|
%\ccHasModels
|
|
|
|
\ccSeeAlso
|
|
|
|
\ccRefIdfierPage{Polynomial_d}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d}\\
|
|
|
|
\end{ccRefConcept}
|
|
|