cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_TotalDeg...

48 lines
1.3 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d::TotalDegree}
\ccDefinition
This \ccc{AdaptableUnaryFunction} computes the total degree
of a \ccc{PolynomialTraits_d::Polynomial_d}.
Given a (multivariate) monomial the sum of all appearing exponents
is the total degree of this monomial.
The total degree of a polynomial $p$ is the maximum of the total degrees
of all appearing (multivariate) monomials in $p$.\\
For instance the total degree of $p = x_0^2x_1^3+x_1^4$ is $5$.
The total degree of the zero polynomial is set to $0$.
From the mathematical point of view this should
be $-inf$, but this would imply an inconvenient return type.
\ccRefines
\ccc{AdaptableUnaryFunction}\\
\ccc{CopyConstructible}\\
\ccc{DefaultConstructible}\\
\ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccTypedef{typedef int result_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{}
\ccOperations
\ccCreationVariable{fo}
\ccMethod{result_type operator()(argument_type p);}
{Computes the total degree of $p$.}
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\ccRefIdfierPage{PolynomialTraits_d::Degree}\\
\ccRefIdfierPage{PolynomialTraits_d::DegreeVector}
\end{ccRefConcept}