cgal/Algebraic_foundations/doc_tex/Algebraic_foundations_ref/is_square.tex

29 lines
847 B
TeX

\begin{ccRefFunction}{is_square}
\ccDefinition
An ring element $x$ is said to be a square iff there exists a ring element
$y$ such
that $x= y*y$. In case the ring is a \ccc{UniqueFactorizationDomain},
$y$ is uniquely defined up to multiplication by units. \\
The function \ccRefName\ is available if
\ccc{Algebraic_structure_traits::Is_square} is not the \ccc{CGAL::Null_functor}.
\ccInclude{CGAL/number_utils.h}
\ccFunction{template <class NT> result_type is_square(const NT& x);}{
The \ccc{result_type} is convertible to \ccc{bool}.
}
\ccFunction{template <class NT> result_type is_square(const NT& x, NT& y);}{
The \ccc{result_type} is convertible to \ccc{bool}.
}
\ccSeeAlso
\ccRefConceptPage{UniqueFactorizationDomain}\\
\ccRefConceptPage{AlgebraicStructureTraits::IsSquare}\\
\end{ccRefFunction}