cgal/Nef_S2/doc_tex/Nef_S2_ref/Sphere_point.tex

48 lines
1.3 KiB
TeX

% begin cgal manual page
\begin{ccRefClass}[Nef_polyhedron_S2<Traits>::]{Sphere_point}
\ccCreationVariable{p}
\ccDefinition
An object \ccc{p} of type \ccc{Sphere_point<R>} is a point on the
surface of a unit sphere. Such points correspond to the nontrivial
directions in space and similarly to the equivalence classes of all
nontrivial vectors under normalization.
\ccSetOneOfTwoColumns{5cm}
\ccTypes
\ccNestedType{RT}{ring number type.}
\ccSetOneOfTwoColumns{5cm}
\ccCreation
\ccConstructor{Sphere_point()}{ creates some sphere point. }
\ccConstructor{Sphere_point(RT x, RT y, RT z)}{ creates a sphere
point corresponding to the point of intersection of the ray starting
at the origin in direction $(x,y,z)$ and the surface of $S_2$. }
\ccSetTwoOfThreeColumns{4cm}{2cm}
\ccOperations
Access to the coordinates is provided by the following operations.
Note that the vector $(x,y,z)$ is not normalized.
\ccMethod{RT x() ;}{ the $x$-coordinate. }
\ccMethod{RT y() ;}{ the $y$-coordinate. }
\ccMethod{RT z() ;}{ the $z$-coordinate. }
\ccMethod{bool operator==(const Nef_polyhedron_S2<Traits>::Sphere_point& q) ;}{Equality.}
\ccMethod{bool operator!=(const Nef_polyhedron_S2<Traits>::Sphere_point& q) ;}{Inequality.}
\ccMethod{Sphere_point antipode() ;}{returns the antipode of \ccc{p}.}
\end{ccRefClass}