mirror of https://github.com/CGAL/cgal
48 lines
1.3 KiB
TeX
48 lines
1.3 KiB
TeX
% begin cgal manual page
|
|
|
|
\begin{ccRefClass}[Nef_polyhedron_S2<Traits>::]{Sphere_point}
|
|
\ccCreationVariable{p}
|
|
|
|
\ccDefinition
|
|
|
|
An object \ccc{p} of type \ccc{Sphere_point<R>} is a point on the
|
|
surface of a unit sphere. Such points correspond to the nontrivial
|
|
directions in space and similarly to the equivalence classes of all
|
|
nontrivial vectors under normalization.
|
|
|
|
\ccSetOneOfTwoColumns{5cm}
|
|
|
|
\ccTypes
|
|
|
|
\ccNestedType{RT}{ring number type.}
|
|
|
|
\ccSetOneOfTwoColumns{5cm}
|
|
|
|
\ccCreation
|
|
|
|
\ccConstructor{Sphere_point()}{ creates some sphere point. }
|
|
|
|
\ccConstructor{Sphere_point(RT x, RT y, RT z)}{ creates a sphere
|
|
point corresponding to the point of intersection of the ray starting
|
|
at the origin in direction $(x,y,z)$ and the surface of $S_2$. }
|
|
|
|
\ccSetTwoOfThreeColumns{4cm}{2cm}
|
|
|
|
\ccOperations
|
|
|
|
Access to the coordinates is provided by the following operations.
|
|
Note that the vector $(x,y,z)$ is not normalized.
|
|
|
|
\ccMethod{RT x() ;}{ the $x$-coordinate. }
|
|
|
|
\ccMethod{RT y() ;}{ the $y$-coordinate. }
|
|
|
|
\ccMethod{RT z() ;}{ the $z$-coordinate. }
|
|
|
|
\ccMethod{bool operator==(const Nef_polyhedron_S2<Traits>::Sphere_point& q) ;}{Equality.}
|
|
|
|
\ccMethod{bool operator!=(const Nef_polyhedron_S2<Traits>::Sphere_point& q) ;}{Inequality.}
|
|
|
|
\ccMethod{Sphere_point antipode() ;}{returns the antipode of \ccc{p}.}
|
|
|
|
\end{ccRefClass} |