cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_IsZeroAt...

40 lines
1.3 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d::IsZeroAtHomogeneous}
\ccDefinition
This \ccc{AdaptableFunctor} returns whether a
\ccc{PolynomialTraits_d::Polynomial_d} $p$ is zero at a given homogeneous point,
which is given by an iterator range.
The polynomial is interpreted as a homogeneous polynomial in all variables. \\
For instance the polynomial $p(x_0,x_1) = x_0^2x_1^3+x_1^4$ is interpreted as the homogeneous
polynomial $p(x_0,x_1,w) = x_0^2x_1^3+x_1^4w^1$.
\ccRefines
\ccc{AdaptableFunctor}
\ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{is_zero_at_homogeneous}
\ccTypedef{typedef bool result_type;}{}\ccGlue
\ccOperations
template <class InputIterator>
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
InputIterator begin,
InputIterator end );}{
Computes whether $p$ is zero at the homogeneous point given by the iterator range,
where $begin$ is referring to the innermost variable.
\ccPrecond{\ccc{std::iterator_traits< InputIterator >::value_type} is
\ccc{PolynomialTraits_d::Innermost_coefficient_type}.}
\ccPrecond
}
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\end{ccRefConcept}