cgal/Algebraic_foundations/doc_tex/Algebraic_foundations_ref/AlgebraicStructureTraits_Di...

121 lines
3.8 KiB
TeX

\begin{ccRefFunctionObjectConcept}{AlgebraicStructureTraits::DivMod}
\ccDefinition
\ccc{AdaptableFunctor} computes both integral quotient and remainder
of division with remainder. The quotient $q$ and remainder $r$ are computed
such that $x = q*y + r$ and $|r| < |y|$ with respect to the proper integer norm of
the represented ring.
\footnote{
For integers this norm is the absolute value.\\
For univariate polynomials this norm is the degree.}
In particular, $r$ is chosen to be $0$ if possible.
Moreover, we require $q$ to be minimized with respect to the proper integer norm.
\ccIgnore{
For types representing \Z, this is round $q$ towards zero.
For univariate polynomials this has no effect at all.
MP_Float Z[1/2] is not clear yet.
}
Note that the last condition is needed to ensure a unique computation of the
pair $(q,r)$. However, an other option is to require minimality for $|r|$,
with the advantage that
a {\em mod(x,y)} operation would return the unique representative of the
residue class of $x$ with respect to $y$, e.g. $mod(2,3)$ should return $-1$.
But this conflicts with nearly all current implementation
of integer types. From there, we decided to stay conform with common
implementations and require $q$ to be computed as $x/y$ rounded towards zero.
\ccIgnore{
Note that in general the above definition does not force a unique computation
of the pair $(q,r)$. This could be solved by requiring $|r|$ to be minimal,
in particular a {\em mod} operation would return the unique representative of
its residue class. But this conflicts with nearly all current implementation
of integer types. From there, we decided to stay conform with common
implementation and require $q$ to be computed as $x/y$ rounded towards zero,
for \ccc{RealEmbeddable} \ccc{EuclideanRing}s.
}
The following table illustrates the behavior for integers:
\begin{tabular}{ccc}
\begin{tabular}{|c|c|c|c|}
\hline
$\ x\ $ & $\ y\ $ & $\ q\ $ & $\ r\ $\\
\hline
3 & 3 & 1 & 0\\
2 & 3 & 0 & 2\\
1 & 3 & 0 & 1\\
0 & 3 & 0 & 0\\
-1 & 3 & 0 & -1\\
-2 & 3 & 0 & -2\\
-3 & 3 & -1 & 0\\
\hline
\end{tabular}
& - &
\begin{tabular}{|c|c|c|c|}
\hline
$\ x\ $ & $\ y\ $ & $\ q\ $ & $\ r\ $\\
\hline
3 & -3 & -1 & 0\\
2 & -3 & 0 & 2\\
1 & -3 & 0 & 1\\
0 & -3 & 0 & 0\\
-1 & -3 & 0 & -1\\
-2 & -3 & 0 & -2\\
-3 & -3 & 1 & 0\\
\hline
\end{tabular}\\
\end{tabular}
\ccRefines
\ccc{AdaptableFunctor}
\ccTypes
\ccNestedType{result_type}
{ Is void.}
\ccGlue
\ccNestedType{first_argument_type}
{ Is \ccc{AlgebraicStructureTraits::Type}.}
\ccGlue
\ccNestedType{second_argument_type}
{ Is \ccc{AlgebraicStructureTraits::Type}.}
\ccGlue
\ccNestedType{third_argument_type}
{ Is \ccc{AlgebraicStructureTraits::Type&}.}
\ccGlue
\ccNestedType{fourth_argument_type}
{ Is \ccc{AlgebraicStructureTraits::Type&}.}
\ccOperations
\ccCreationVariable{div_mod}
\ccThree{xxxxxxxxxxx}{xxxxxxxxxxx}{}
\ccMethod{result_type operator()( first_argument_type x,
second_argument_type y,
third_argument_type q,
fourth_argument_type r);}{
computes the quotient $q$ and remainder $r$, such that $x = q*y + r$
and $r$ minimal with respect to the Euclidean Norm on
\ccc{Type}. }
\ccMethod{template <class NT1, class NT2> result_type
operator()(NT1 x, NT2 y, third_argument_type q, fourth_argument_type r);}
{This operator is defined if \ccc{NT1} and \ccc{NT2} are \ccc{ExplicitInteroperable}
with coercion type \ccc{AlgebraicStructureTraits::Type}. }
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{AlgebraicStructureTraits}\\
\ccRefIdfierPage{AlgebraicStructureTraits::Mod}\\
\ccRefIdfierPage{AlgebraicStructureTraits::Div}\\
\end{ccRefFunctionObjectConcept}