mirror of https://github.com/CGAL/cgal
56 lines
1.6 KiB
TeX
56 lines
1.6 KiB
TeX
\begin{ccRefFunctionObjectConcept}{AlgebraicStructureTraits::Divides}
|
|
|
|
\ccDefinition
|
|
|
|
\ccc{AdaptableBinaryFunction},
|
|
returns true if the first argument divides the second argument.
|
|
|
|
Integral division (a.k.a. exact division or division without remainder) maps
|
|
ring elements $(n,d)$ to ring element $c$ such that $n = dc$ if such a $c$
|
|
exists. In this case it is said that $d$ divides $n$.
|
|
|
|
This functor is required to provide two operators. The first operator takes two
|
|
arguments and returns true if the first argument divides the second argument.
|
|
The second operator returns $c$ via the additional third argument.
|
|
|
|
\ccRefines
|
|
|
|
\ccc{AdaptableBinaryFunction}
|
|
|
|
\ccTypes
|
|
\ccNestedType{result_type}
|
|
{ Is \ccc{AlgebraicStructureTraits::Boolean}.}
|
|
\ccGlue
|
|
\ccNestedType{first_argument}
|
|
{ Is \ccc{AlgebraicStructureTraits::Type}.}
|
|
\ccGlue
|
|
\ccNestedType{second_argument}
|
|
{ Is \ccc{AlgebraicStructureTraits::Type}.}
|
|
|
|
\ccOperations
|
|
\ccCreationVariable{divides}
|
|
\ccThree{xxxxxxxxxxx}{xxxxxxxxxxx}{}
|
|
|
|
\ccMethod{result_type operator()(first_argument_type d,
|
|
second_argument_type n);}
|
|
{ Computes whether $d$ divides $n$. }
|
|
|
|
\ccMethod{result_type operator()(
|
|
first_argument_type d,
|
|
second_argument_type n,
|
|
AlgebraicStructureTraits::Type& c);}
|
|
{
|
|
Computes whether $d$ divides $n$.
|
|
Moreover it computes $c$ if $d$ divides $n$,
|
|
otherwise the value of $c$ is undefined.
|
|
}
|
|
|
|
%\ccHasModels
|
|
|
|
\ccSeeAlso
|
|
|
|
\ccRefIdfierPage{AlgebraicStructureTraits}\\
|
|
\ccRefIdfierPage{AlgebraicStructureTraits::IntegralDivision}
|
|
|
|
\end{ccRefFunctionObjectConcept}
|