cgal/Algebraic_foundations/doc_tex/Algebraic_foundations_ref/AlgebraicStructureTraits_In...

48 lines
1.5 KiB
TeX

\begin{ccRefFunctionObjectConcept}{AlgebraicStructureTraits::IntegralDivision}
\ccDefinition
\ccc{AdaptableBinaryFunction} providing an integral division.
Integral division (a.k.a. exact division or division without remainder) maps
ring elements $(x,y)$ to ring element $z$ such that $x = yz$ if such a $z$
exists (i.e. if $x$ is divisible by $y$). Otherwise the effect of invoking
this operation is undefined. Since the ring represented is an integral domain,
$z$ is uniquely defined if it exists.
\ccRefines
\ccc{AdaptableBinaryFunction}
\ccTypes
\ccNestedType{result_type}
{ Is \ccc{AlgebraicStructureTraits::Type}.}
\ccGlue
\ccNestedType{first_argument}
{ Is \ccc{AlgebraicStructureTraits::Type}.}
\ccGlue
\ccNestedType{second_argument}
{ Is \ccc{AlgebraicStructureTraits::Type}.}
\ccOperations
\ccCreationVariable{integral_division}
\ccThree{xxxxxxxxxxx}{xxxxxxxxxxx}{}
\ccMethod{result_type operator()(first_argument_type x,
second_argument_type y);}
{ returns $x/y$, this is an integral division. }
\ccMethod{template <class NT1, class NT2> result_type operator()(NT1 x, NT2 y);}
{This operator is defined if \ccc{NT1} and \ccc{NT2} are \ccc{ExplicitInteroperable}
with coercion type \ccc{AlgebraicStructureTraits::Type}. }
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{AlgebraicStructureTraits}\\
\ccRefIdfierPage{AlgebraicStructureTraits::Divides}
\end{ccRefFunctionObjectConcept}