cgal/Visibility_2/include/CGAL/Rotational_sweep_visibility...

956 lines
32 KiB
C++

// Copyright (c) 2013 Technical University Braunschweig (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s): Kan Huang <huangkandiy@gmail.com>
//
#ifndef CGAL_ROTATIONAL_SWEEP_VISIBILITY_2_H
#define CGAL_ROTATIONAL_SWEEP_VISIBILITY_2_H
#include <iostream>
#include <vector>
#include <set>
#include <map>
#include <utility>
#include <CGAL/Visibility_2/visibility_utils.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/tags.h>
#include <CGAL/bounding_box.h>
#include <CGAL/enum.h>
#include <CGAL/Timer.h>
namespace CGAL {
template <typename Arrangement_2, typename RegularizationTag>
class Rotational_sweep_visibility_2 {
public:
typedef Arrangement_2 Input_arrangement_2;
typedef Arrangement_2 Output_arrangement_2;
typedef typename Input_arrangement_2::Geometry_traits_2 Geometry_traits_2;
typedef typename Arrangement_2::Vertex_const_handle Vertex_const_handle;
typedef typename Arrangement_2::Vertex_handle Vertex_handle;
typedef typename Arrangement_2::Halfedge_const_handle Halfedge_const_handle;
typedef typename Arrangement_2::Halfedge_handle Halfedge_handle;
typedef typename Arrangement_2::Ccb_halfedge_const_circulator
Ccb_halfedge_const_circulator;
typedef typename Arrangement_2::Face_const_handle Face_const_handle;
typedef typename Arrangement_2::Face_handle Face_handle;
typedef typename Geometry_traits_2::Kernel K;
typedef typename Geometry_traits_2::Point_2 Point_2;
typedef typename Geometry_traits_2::Ray_2 Ray_2;
typedef typename Geometry_traits_2::Segment_2 Segment_2;
typedef typename Geometry_traits_2::Line_2 Line_2;
typedef typename Geometry_traits_2::Vector_2 Vector_2;
typedef typename Geometry_traits_2::Direction_2 Direction_2;
typedef typename Geometry_traits_2::FT Number_type;
typedef typename Geometry_traits_2::Object_2 Object_2;
typedef RegularizationTag Regularization_tag;
typedef CGAL::Tag_true Supports_general_polygon_tag;
typedef CGAL::Tag_true Supports_simple_polygon_tag;
//profile
Timer timer;
static double input_t;
static double sweep_t;
static double cut_from_butterfly_t;
static double heap_insert_t;
static double heap_remove_t;
static double heap_swap_t;
static double input_v_t;
static double quicksort_t;
private:
typedef std::vector<Point_2> Points;
typedef Vertex_const_handle VH;
typedef std::vector<VH> VHs;
typedef Halfedge_const_handle Edge;
typedef std::vector<Edge> Edges;
const Geometry_traits_2 *geom_traits;
const Input_arrangement_2 *p_arr;
Point_2 q;
// Point_2 dp;
Points polygon; //visibility polygon
std::map<VH, VHs> neighbors; //vertex and its neighbours that are relevant to visibility polygon
std::map<VH, Edges> incident_edges;
std::map<Edge, int> edx; //index of edge in the heap
Edges active_edges; //a heap of edges that interset the current vision ray.
VHs vs; //angular sorted vertices
bool is_vertex_query;
bool is_edge_query;
bool is_big_cone; //whether the angle of visibility_cone is greater than pi.
Edges bad_edge;
VH query_vertex;
Point_2 source; //one end of visibility cone
Point_2 target; //another end of visibility cone
public:
Rotational_sweep_visibility_2(): p_arr(NULL), geom_traits(NULL) {}
Rotational_sweep_visibility_2(const Input_arrangement_2& arr): p_arr(&arr) {
geom_traits = p_arr->geometry_traits();
}
Face_handle compute_visibility(const Point_2& q, const Halfedge_const_handle e, Arrangement_2& arr_out) {
arr_out.clear();
bad_edge.clear();
this->q = q;
if (Visibility_2::compare_xy_2(geom_traits, q, e->target()->point())==EQUAL) {
query_vertex = e->target();
is_vertex_query = true;
is_edge_query = false;
source = e->source()->point();
target = e->next()->target()->point();
is_big_cone = CGAL::right_turn(source, q, target);
typename Input_arrangement_2::Halfedge_around_vertex_const_circulator first, curr;
first = curr = e->target()->incident_halfedges();
do {
if (curr->face() == e->face())
bad_edge.push_back(curr);
else if (curr->twin()->face() == e->face())
bad_edge.push_back(curr->twin());
} while (++curr != first);
}
else {
is_vertex_query = false;
is_edge_query = true;
source = e->source()->point();
target = e->target()->point();
bad_edge.push_back(e);
is_big_cone = false;
}
visibility_region_impl(e->face(), q);
timer.reset();
timer.start();
//Decide which inside of the visibility butterfly is needed.
int source_idx(-1), target_idx(-1) ;
for (int i = 0; i != polygon.size(); i++) {
if ( Visibility_2::compare_xy_2(geom_traits, polygon[i], source)==EQUAL ) {
source_idx = i;
}
else if ( Visibility_2::compare_xy_2(geom_traits, polygon[i], target)==EQUAL ) {
target_idx = i;
}
if (source_idx != -1 && target_idx != -1)
break;
}
int small_idx, big_idx;
if ( source_idx < target_idx ) {
small_idx = source_idx;
big_idx = target_idx;
}
else {
small_idx = target_idx;
big_idx = source_idx;
}
int next_idx = small_idx + 1;
bool is_between;
if (CGAL::right_turn(source, q, target)) {
is_between = false;
while (next_idx != big_idx) {
if (CGAL::left_turn(source, q, polygon[next_idx]) || CGAL::left_turn(q, target, polygon[next_idx])) {
is_between = true;
break;
}
next_idx++;
}
}
else {
is_between = true;
while (next_idx != big_idx) {
if (CGAL::right_turn(source, q, polygon[next_idx]) || CGAL::right_turn(q, target, polygon[next_idx])) {
is_between = false;
break;
}
next_idx++;
}
}
timer.stop();
cut_from_butterfly_t+=timer.time();
typename Points::iterator first = polygon.begin() + small_idx;
typename Points::iterator last = polygon.begin() + big_idx;
if (is_between) {
Points polygon_out(first, last+1);
if (is_vertex_query)
polygon_out.push_back(q);
Visibility_2::report_while_handling_needles_<Rotational_sweep_visibility_2>(geom_traits, q, polygon_out, arr_out);
}
else {
Points polygon_out(polygon.begin(), first+1);
if (is_vertex_query) polygon_out.push_back(q);
for (int i = big_idx; i != polygon.size(); i++) {
polygon_out.push_back(polygon[i]);
}
Visibility_2::report_while_handling_needles_<Rotational_sweep_visibility_2>(geom_traits, q, polygon_out, arr_out);
}
conditional_regularize(arr_out, Regularization_tag());
if (arr_out.faces_begin()->is_unbounded())
return ++arr_out.faces_begin();
else
return arr_out.faces_begin();
}
Face_handle compute_visibility(const Point_2& q, const Face_const_handle f, Output_arrangement_2& arr_out) {
arr_out.clear();
this->q = q;
is_vertex_query = false;
is_edge_query = false;
visibility_region_impl(f, q);
Visibility_2::report_while_handling_needles_<Rotational_sweep_visibility_2>(geom_traits, q, polygon, arr_out);
conditional_regularize(arr_out, Regularization_tag());
if (arr_out.faces_begin()->is_unbounded())
return ++arr_out.faces_begin();
else
return arr_out.faces_begin();
}
bool is_attached() {
return (p_arr != NULL);
}
void attach(const Input_arrangement_2& arr) {
p_arr = &arr;
geom_traits = p_arr->geometry_traits();
}
void detach() {
p_arr = NULL;
geom_traits = NULL;
}
const Input_arrangement_2& arr() {
return *p_arr;
}
private:
bool do_intersect_ray(const Point_2& q,
const Point_2& dp,
const Point_2& p1,
const Point_2& p2) {
return (CGAL::orientation(q, dp, p1) != CGAL::orientation(q, dp, p2) && CGAL::orientation(q, p1, dp) == CGAL::orientation(q, p1, p2));
}
void funnel(int i, int j) {
VHs right, left;
bool block_left(false), block_right(false);
VH former = vs[i], neib;
for (int l=i; l<j; l++) {
bool left_v(false), right_v(false), has_predecessor(false);
for (int k=0; k<neighbors[vs[l]].size(); k++) {
neib= neighbors[vs[l]][k];
if ( neib == former ) {
has_predecessor = true;
continue;
}
if (CGAL::left_turn(q, vs[l]->point(), neib->point()))
left_v = true;
else
right_v = CGAL::right_turn(q, vs[l]->point(), neib->point());
}
if (has_predecessor) {
block_left = block_left || left_v;
block_right = block_right || right_v;
}
else {
block_left = left_v;
block_right = right_v;
}
if (block_left && block_right) {
right.push_back(vs[l]);
break;
}
else {
if (block_left)
left.push_back(vs[l]);
else
right.push_back(vs[l]);
}
former = vs[l];
}
for (int l=0; l!=right.size(); l++)
vs[i+l] = right[l];
for (int l=0; l!=left.size(); l++)
vs[i+l+right.size()] = left[left.size()-1-l];
}
// void compare_heap(std::vector<Edge>& heap1, std::vector<Edge>& heap2) {
// if (heap1.size() != heap2.size()) {
// print_heap(heap1);
// print_heap(heap2);
// return;
// }
// for (int i=0; i<heap1.size(); i++)
// if (heap1[i] != heap2[i]) {
// print_heap(heap1);
// print_heap(heap2);
// return;
// }
// std::cout<<"right heap has edges: "<<active_edges.size()<<std::endl;
// }
// void print_heap(std::vector<Edge> heap) {
// for (int i=0; i<heap.size(); i++) {
// std::cout<<i<<':'<< heap[i].first<<','<<heap[i].second<<std::endl;
// }
// }
void visibility_region_impl(const Face_const_handle f, const Point_2& q) {
vs.clear();
polygon.clear();
active_edges.clear();
incident_edges.clear();
neighbors.clear();
edx.clear();
Edges good_edges;
if (is_vertex_query || is_edge_query)
input_face(f, good_edges);
else
input_face(f);
//initiation of vision ray
Vector_2 dir;
if (Direction_2(-1, 0) < Direction_2(Vector_2(q, vs.back()->point())))
{
dir = Vector_2(1, 0) + Vector_2(q, vs.back()->point());
}
else {
dir = Vector_2(0, -1);
}
Point_2 dp = q + dir;
// std::vector<Edge> heapc;
// heapc.clear();
//initiation of active_edges
if (is_vertex_query || is_edge_query) {
for (int i=0; i!=good_edges.size(); i++) {
if (do_intersect_ray(q, dp, good_edges[i].source()->point(), good_edges[i].target()->point())) {
heap_insert(good_edges[i]);
// heapc.push_back(good_edges[i]);
}
}
// std::make_heap(heapc.begin(), heapc.end(), Is_closer(q, geom_traits));
// for (int i=0; i!=heap.size(); i++) {
// edx[heap[i]] = i;
// }
// compare_heap(heap, heapc);
}
else {
Ccb_halfedge_const_circulator curr = f->outer_ccb();
Ccb_halfedge_const_circulator circ = curr;
do {
// Point_2 p1 = curr->target()->point();
// Point_2 p2 = curr->source()->point();
if (do_intersect_ray(q, dp, curr->target()->point(), curr->source()->point()))
heap_insert(curr);
} while (++curr != circ);
typename Arrangement_2::Hole_const_iterator hi;
for (hi = f->holes_begin(); hi != f->holes_end(); ++hi) {
Ccb_halfedge_const_circulator curr = *hi, circ = *hi;
do {
// Point_2 p1 = curr->target()->point();
// Point_2 p2 = curr->source()->point();
if (do_intersect_ray(q, dp, curr->target()->point(), curr->source()->point()))
heap_insert(curr);
} while (++curr != circ);
}
}
//angular sweep begins
for (int i=0; i!=vs.size(); i++) {
VH vh = vs[i];
Edge closest_e = active_edges.front(); //save the closest edge;
int insert_cnt(0), remove_cnt(0);
Edges& edges = incident_edges[vh];
Edges insert_es, remove_es;
for (int j=0; j!=neis.size(); j++) {
Edge e = edges[j];
// Orientation o=Visibility_2::orientation_2(geom_traits, q, dp, nei);
/* if (o==RIGHT_TURN ||
(o==COLLINEAR && i>0 && Visibility_2::compare_xy_2(geom_traits, nei, vs[i-1])==EQUAL))*/
if (edx.count(e)){
remove_es.push_back(e);
}
else {
insert_es.push_back(e);
}
}
insert_cnt = insert_es.size();
remove_cnt = remove_es.size();
if (remove_es.size()==1 && insert_es.size()==1) {
int remove_idx = edx[remove_es.front()];
active_edges[remove_idx] = insert_es.front();
edx[insert_es.front()] = remove_idx;
edx.erase(remove_es.front());
}
else {
for (int j=0; j!=remove_es.size(); j++) {
heap_remove(edx[remove_es[j]]);
}
for (int j=0; j!=insert_es.size(); j++) {
heap_insert(insert_es[j]);
}
}
if (closest_e != active_edges.front()) {
//when the closest edge changed
if (remove_cnt > 0 && insert_cnt > 0) {
//some edges are added and some are deleted, which means the vertice sweeped is a vertice of visibility polygon.
update_visibility(vh->point());
}
if (remove_cnt == 0 && insert_cnt > 0) {
//only add some edges, means the view ray is blocked by new edges.
//therefore first add the intersection of view ray and former closet edge, then add the vertice sweeped.
update_visibility(ray_seg_intersection(q,
vh->point(),
closest_e->target()->point(),
closest_e->source()->point()));
update_visibility(vh->point());
}
if (remove_cnt > 0 && insert_cnt == 0) {
//only delete some edges, means some block is moved and the view ray can reach the segments after the block.
update_visibility(vh->point());
update_visibility(ray_seg_intersection(q, vh, active_edges.front().first, active_edges.front().second));
}
}
}
}
// Edge create_pair(const Point_2& p1, const Point_2& p2) const{
// assert(p1 != p2);
// if (Visibility_2::compare_xy_2(geom_traits, p1, p2)==SMALLER)
// return Edge(p1, p2);
// else
// return Edge(p2, p1);
// }
void heap_insert(const Edge e) {
active_edges.push_back(e);
int i = active_edges.size()-1;
edx[e] = i;
int parent = (i-1)/2;
while (i!=0 && is_closer(q, active_edges[i], active_edges[parent])){
heap_swap(i, parent);
i = parent;
parent = (i-1)/2;
}
}
void heap_remove(int i) {
edx.erase(active_edges[i]);
if (i == active_edges.size()-1)
{
active_edges.pop_back();
}
else {
active_edges[i] = active_edges.back();
edx[active_edges[i]] = i;
active_edges.pop_back();
int i_before_swap = i;
int parent = (i-1)/2;
while (i!=0 && is_closer(q, active_edges[i], active_edges[parent])){
heap_swap(i, parent);
i = parent;
parent = (i-1)/2;
}
if (i==i_before_swap) {
bool swapped;
do {
int left_son = i*2+1;
int right_son = i*2+2;
int closest_idx = i;
if (left_son < active_edges.size() && is_closer(q, active_edges[left_son], active_edges[i])) {
closest_idx = left_son;
}
if (right_son < active_edges.size() && is_closer(q, active_edges[right_son], active_edges[closest_idx])) {
closest_idx = right_son;
}
swapped = false;
if (closest_idx != i) {
heap_swap(i, closest_idx);
i = closest_idx;
swapped = true;
}
} while(swapped);
}
}
}
void heap_swap(int i, int j) {
edx[active_edges[i]] = j;
edx[active_edges[j]] = i;
Edge temp = active_edges[i];
active_edges[i] = active_edges[j];
active_edges[j] = temp;
}
void print_point(const Point_2& p) {
std::cout<<p.x()<<','<<p.y()<<std::endl;
}
// class Is_closer:public std::binary_function<Pair, Pair, bool> {
// const Point_2& q;
// const Geometry_traits_2* geom_traits;
// public:
// Is_closer(const Point_2& q, const Geometry_traits_2* traits): q(q) {
// geom_traits = traits;
// }
// bool operator() (const Pair& e1, const Pair& e2) const {
// const Point_2& s1=e1.first, t1=e1.second, s2=e2.first, t2=e2.second;
// Orientation e1q = Visibility_2::orientation_2(geom_traits, s1, t1, q);
// switch (e1q)
// {
// case COLLINEAR:
// if (Visibility_2::collinear(geom_traits, q, s2, t2)) {
// //q is collinear with e1 and e2.
// return (Visibility_2::less_distance_to_point_2(geom_traits, q, s1, s2)
// || Visibility_2::less_distance_to_point_2(geom_traits, q, t1, t2));
// }
// else {
// //q is not collinear with e2. q is collinear with e1.
// if (Visibility_2::collinear(geom_traits, s2, t2, s1))
// return (Visibility_2::orientation_2(geom_traits, s2, t2, q)
// == Visibility_2::orientation_2(geom_traits, s2, t2, t1));
// else
// return (Visibility_2::orientation_2(geom_traits, s2, t2, q)
// == Visibility_2::orientation_2(geom_traits, s2, t2, s1));
// }
// case RIGHT_TURN:
// switch (Visibility_2::orientation_2(geom_traits, s1, t1, s2)) {
// case COLLINEAR:
// return Visibility_2::orientation_2(geom_traits, s1, t1, t2)!=e1q;
// case RIGHT_TURN:
// if (Visibility_2::orientation_2(geom_traits, s1, t1, t2) == LEFT_TURN)
// return Visibility_2::orientation_2(geom_traits, s2, t2, q)
// == Visibility_2::orientation_2(geom_traits, s2, t2, s1);
// else
// return false;
// case LEFT_TURN:
// if (Visibility_2::orientation_2(geom_traits, s1, t1, t2) == RIGHT_TURN)
// return Visibility_2::orientation_2(geom_traits, s2, t2, q)
// == Visibility_2::orientation_2(geom_traits, s2, t2, s1);
// else
// return true;
// }
// case LEFT_TURN:
// switch (Visibility_2::orientation_2(geom_traits, s1, t1, s2)) {
// case COLLINEAR:
// return Visibility_2::orientation_2(geom_traits, s1, t1, t2)!=e1q;
// case LEFT_TURN:
// if (Visibility_2::orientation_2(geom_traits, s1, t1, t2) == RIGHT_TURN)
// return Visibility_2::orientation_2(geom_traits, s2, t2, q)
// == Visibility_2::orientation_2(geom_traits, s2, t2, s1);
// else
// return false;
// case RIGHT_TURN:
// if (Visibility_2::orientation_2(geom_traits, s1, t1, t2) == LEFT_TURN)
// return Visibility_2::orientation_2(geom_traits, s2, t2, q)
// == Visibility_2::orientation_2(geom_traits, s2, t2, s1);
// else
// return true;
// }
// }
// }
// };
bool is_closer(const Point_2& q,
const Edge& e1,
const Edge& e2) {
const Point_2& s1=e1->target()->point(),
t1=e1->source()->point(),
s2=e2->target()->point(),
t2=e2->source()->point();
Orientation e1q = Visibility_2::orientation_2(geom_traits, s1, t1, q);
switch (e1q)
{
case COLLINEAR:
if (Visibility_2::collinear(geom_traits, q, s2, t2)) {
//q is collinear with e1 and e2.
return (Visibility_2::less_distance_to_point_2(geom_traits, q, s1, s2)
|| Visibility_2::less_distance_to_point_2(geom_traits, q, t1, t2));
}
else {
//q is not collinear with e2. q is collinear with e1.
if (Visibility_2::collinear(geom_traits, s2, t2, s1))
return (Visibility_2::orientation_2(geom_traits, s2, t2, q)
== Visibility_2::orientation_2(geom_traits, s2, t2, t1));
else
return (Visibility_2::orientation_2(geom_traits, s2, t2, q)
== Visibility_2::orientation_2(geom_traits, s2, t2, s1));
}
case RIGHT_TURN:
switch (Visibility_2::orientation_2(geom_traits, s1, t1, s2)) {
case COLLINEAR:
return Visibility_2::orientation_2(geom_traits, s1, t1, t2)!=e1q;
case RIGHT_TURN:
if (Visibility_2::orientation_2(geom_traits, s1, t1, t2) == LEFT_TURN)
return Visibility_2::orientation_2(geom_traits, s2, t2, q)
== Visibility_2::orientation_2(geom_traits, s2, t2, s1);
else
return false;
case LEFT_TURN:
if (Visibility_2::orientation_2(geom_traits, s1, t1, t2) == RIGHT_TURN)
return Visibility_2::orientation_2(geom_traits, s2, t2, q)
== Visibility_2::orientation_2(geom_traits, s2, t2, s1);
else
return true;
}
case LEFT_TURN:
switch (Visibility_2::orientation_2(geom_traits, s1, t1, s2)) {
case COLLINEAR:
return Visibility_2::orientation_2(geom_traits, s1, t1, t2)!=e1q;
case LEFT_TURN:
if (Visibility_2::orientation_2(geom_traits, s1, t1, t2) == RIGHT_TURN)
return Visibility_2::orientation_2(geom_traits, s2, t2, q)
== Visibility_2::orientation_2(geom_traits, s2, t2, s1);
else
return false;
case RIGHT_TURN:
if (Visibility_2::orientation_2(geom_traits, s1, t1, t2) == LEFT_TURN)
return Visibility_2::orientation_2(geom_traits, s2, t2, q)
== Visibility_2::orientation_2(geom_traits, s2, t2, s1);
else
return true;
}
}
}
Point_2 ray_seg_intersection(
const Point_2& q, const Point_2& dp, // the ray
const Point_2& s, const Point_2& t) // the segment
{
if (CGAL::collinear(q, dp, s)) {
if (CGAL::collinear(q, dp, t)) {
if (CGAL::compare_distance_to_point(q, s, t)==CGAL::SMALLER)
return s;
else
return t;
}
else
return s;
}
Ray_2 ray(q,dp);
Segment_2 seg(s,t);
CGAL::Object result = CGAL::intersection(ray, seg);
return *(CGAL::object_cast<Point_2>(&result));
// if (const Point_2 *ipoint = CGAL::object_cast<Point_2>(&result)) {
// return *ipoint;
// }
// else {
// if (const Segment_2 *iseg = CGAL::object_cast<Segment_2 >(&result)) {
// switch (CGAL::compare_distance_to_point(ray.source(), iseg->source(), iseg->target())) {
// case (CGAL::SMALLER):
// return iseg->source();
// break;
// case (CGAL::LARGER) :
// return iseg->target();
// break;
// }
// } else {
// assert(false);
// }
// }
}
void update_visibility(const Point_2& p){
if (polygon.empty())
polygon.push_back(p);
else
{
if (Visibility_2::compare_xy_2(geom_traits, polygon.back(), p) != EQUAL) {
polygon.push_back(p);
}
}
}
class Is_sweeped_first:public std::binary_function<VH, VH, bool> {
const Point_2& q;
const Geometry_traits_2* geom_traits;
public:
Is_sweeped_first(const Point_2& q, const Geometry_traits_2* traits):q(q){
geom_traits = traits;
}
bool operator() (const VH v1, const VH v2) const {
Point_2& p1 = v1->point();
Point_2& p2 = v2->point();
int qua1 = quadrant(q, p1);
int qua2 = quadrant(q, p2);
if (qua1 < qua2)
return true;
if (qua1 > qua2)
return false;
if (collinear(q, p1, p2))
return (CGAL::compare_distance_to_point(q, p1, p2) == CGAL::SMALLER);
else
return CGAL::right_turn(p1, q, p2);
}
int quadrant(const Point_2& o, const Point_2& p) const {
typename Geometry_traits_2::Compare_x_2 compare_x = geom_traits->compare_x_2_object();
typename Geometry_traits_2::Compare_y_2 compare_y = geom_traits->compare_y_2_object();
Comparison_result dx = compare_x(p, o);
Comparison_result dy = compare_y(p, o);
if (dx==LARGER && dy!=SMALLER)
return 1;
if (dx!=LARGER && dy==LARGER)
return 2;
if (dx==SMALLER && dy!=LARGER)
return 3;
if (dx!=SMALLER && dy==SMALLER)
return 4;
return 0;
}
};
// bool is_sweeped_first(const Point_2& p1, const Point_2& p2)
// {
// int qua1 = quadrant(q, p1);
// int qua2 = quadrant(q, p2);
// if (qua1 < qua2)
// return true;
// if (qua1 > qua2)
// return false;
// if (collinear(q, p1, p2))
// return (CGAL::compare_distance_to_point(q, p1, p2) == CGAL::SMALLER);
// else
// return CGAL::right_turn(p1, q, p2);
// }
//when query is in face, every edge is good.
void input_neighbor_f( const Halfedge_const_handle e) {
VH v = e->target();
if (!neighbors.count(v))
vs.push_back(v);
neighbors[v].push_back(e->source()->point());
neighbors[v].push_back(e->next()->target()->point());
incident_edges[v].push_back(e);
incident_edges[v].push_back(e->next());
}
bool is_in_cone(const Point_2& p) const{
if (is_big_cone)
return (!CGAL::right_turn(source, q, p)) || (!CGAL::left_turn(target, q, p));
else
return (!CGAL::right_turn(source, q, p)) && (!CGAL::left_turn(target, q, p));
}
//for vertex and edge query: the visibility is limited in a cone.
void input_edge(const Halfedge_const_handle e,
Edges& good_edges) {
for (int i=0; i<bad_edge.size(); i++)
if (e == bad_edge[i])
return;
VH v1 = e->target();
VH v2 = e->source();
if (is_in_cone(v1->point()) || is_in_cone(v2->point()) || do_intersect_ray(q, source, v1->point(), v2->point())) {
good_edges.push_back(e);
if (!neighbors.count(v1))
vs.push_back(v1);
neighbors[v1].push_back(v2);
incident_edges[v1].push_back(e);
if (!neighbors.count(v2))
vs.push_back(v2);
neighbors[v2].push_back(v1);
incident_edges[v2].push_back(e);
}
}
//for face query: traverse the face to get all edges and sort vertices in counter-clockwise order.
void input_face (Face_const_handle fh)
{
Ccb_halfedge_const_circulator curr = fh->outer_ccb();
Ccb_halfedge_const_circulator circ = curr;
do {
assert(curr->face() == fh);
input_neighbor_f(curr);
} while (++curr != circ);
typename Arrangement_2::Hole_const_iterator hi;
for (hi = fh->holes_begin(); hi != fh->holes_end(); ++hi) {
Ccb_halfedge_const_circulator curr = *hi, circ = *hi;
do {
assert(curr->face() == fh);
input_neighbor_f(curr);
} while (++curr != circ);
}
std::sort(vs.begin(), vs.end(), Is_sweeped_first(q, geom_traits));
for (int i=0; i!=vs.size(); i++) {
int j = i+1;
while (j != vs.size()) {
if (!CGAL::collinear(q, vs[i]->point(), vs[j]->point()))
break;
j++;
}
if (j-i>1)
funnel(i, j);
i = j-1;
}
}
//for vertex or edge query: traverse the face to get all edges and sort vertices in counter-clockwise order.
void input_face (Face_const_handle fh,
Edges& good_edges)
{
// timer.reset();
// timer.start();
Ccb_halfedge_const_circulator curr = fh->outer_ccb();
Ccb_halfedge_const_circulator circ = curr;
do {
assert(curr->face() == fh);
input_edge(curr, good_edges);
} while (++curr != circ);
typename Arrangement_2::Hole_const_iterator hi;
for (hi = fh->holes_begin(); hi != fh->holes_end(); ++hi) {
Ccb_halfedge_const_circulator curr = *hi, circ = *hi;
do {
assert(curr->face() == fh);
input_edge(curr, good_edges);
} while (++curr != circ);
}
//todo
Points points;
for (int i=0; i<vs.size(); i++) {
points.push_back(vs[i]->point());
}
points.push_back(q);
typename Geometry_traits_2::Iso_rectangle_2 bb = bounding_box(points.begin(), points.end());
// points.pop_back();
Number_type xmin, xmax, ymin, ymax;
typename Geometry_traits_2::Compute_x_2 compute_x = geom_traits->compute_x_2_object();
typename Geometry_traits_2::Compute_y_2 compute_y = geom_traits->compute_y_2_object();
xmin = compute_x(bb.min())-1;
ymin = compute_y(bb.min())-1;
xmax = compute_x(bb.max())+1;
ymax = compute_y(bb.max())+1;
Point_2 box[4] = {Point_2(xmin, ymin), Point_2(xmax, ymin),
Point_2(xmax, ymax), Point_2(xmin, ymax)};
for (int i=0; i<4; i++) {
vs.push_back(box[i]);
neighbors[box[i]].push_back(box[(i+3)%4]);
neighbors[box[i]].push_back(box[(i+1)%4]);
good_edges.push_back(create_pair(box[i], box[(i+1)%4]));
}
std::sort(vs.begin(), vs.end(), Is_sweeped_first(q, geom_traits));
for (int i=0; i!=vs.size(); i++) {
int j = i+1;
while (j != vs.size()) {
if (!CGAL::collinear(q, vs[i]->point(), vs[j]->point()))
break;
j++;
}
if (j-i>1)
funnel(i, j);
i = j-1;
}
}
// void build_arr(const Pvec& polygon, Output_arrangement_2& arr ) {
// for (int i = 0; i != polygon.size()-1; i++ ) {
// CGAL::insert(arr, Segment_2(polygon[i], polygon[i+1]));
// }
// //print_vectex(polygon);
// CGAL::insert(arr, Segment_2(polygon.front(), polygon.back()));
// }
void conditional_regularize(Output_arrangement_2& arr_out, CGAL::Tag_true) {
regularize_output(arr_out);
}
void conditional_regularize(Output_arrangement_2& arr_out, CGAL::Tag_false) {
//do nothing
}
void regularize_output(Output_arrangement_2& arr_out) {
typename Output_arrangement_2::Edge_iterator e_itr;
for (e_itr = arr_out.edges_begin();
e_itr != arr_out.edges_end();
e_itr++) {
Halfedge_handle he = e_itr;
Halfedge_handle he_twin = he->twin();
if (he->face() == he_twin->face()) {
arr_out.remove_edge(he);
}
}
}
};
template <typename Arrangement_2, typename RegularizationTag>
double CGAL::Rotational_sweep_visibility_2<Arrangement_2, RegularizationTag>::sweep_t = 0;
template <typename Arrangement_2, typename RegularizationTag>
double CGAL::Rotational_sweep_visibility_2<Arrangement_2, RegularizationTag>::cut_from_butterfly_t = 0;
template <typename Arrangement_2, typename RegularizationTag>
double CGAL::Rotational_sweep_visibility_2<Arrangement_2, RegularizationTag>::input_t = 0;
template <typename Arrangement_2, typename RegularizationTag>
double CGAL::Rotational_sweep_visibility_2<Arrangement_2, RegularizationTag>::heap_insert_t = 0;
template <typename Arrangement_2, typename RegularizationTag>
double CGAL::Rotational_sweep_visibility_2<Arrangement_2, RegularizationTag>::heap_remove_t = 0;
template <typename Arrangement_2, typename RegularizationTag>
double CGAL::Rotational_sweep_visibility_2<Arrangement_2, RegularizationTag>::heap_swap_t = 0;
template <typename Arrangement_2, typename RegularizationTag>
double CGAL::Rotational_sweep_visibility_2<Arrangement_2, RegularizationTag>::input_v_t = 0;
template <typename Arrangement_2, typename RegularizationTag>
double CGAL::Rotational_sweep_visibility_2<Arrangement_2, RegularizationTag>::quicksort_t = 0;
} // end namespace CGAL
#endif