cgal/Algebraic_kernel/doc_tex/Algebraic_kernel_ref/Global_functions.tex

184 lines
5.2 KiB
TeX

%%%%%%%%%%%%%% predicates
\begin{ccRefFunction}{compare_x}
\ccFunction{template < class AlgebraicKernel_2_2>
Comparison_result compare_x
(const AlgebraicKernel_2_2::Root_for_circles_2_2 &r1,
const AlgebraicKernel_2_2::Root_for_circles_2_2 &r2);}
{Calls the operator() of \ccc{AlgebraicKernel_2_2::Compare_X}.}
\ccSeeAlso
\ccRefConceptPage{AlgebraicKernel_2_2::CompareX}
\end{ccRefFunction}
\begin{ccRefFunction}{compare_y}
\ccFunction{template < class AlgebraicKernel_2_2>
Comparison_result compare_y
(const AlgebraicKernel_2_2::Root_for_circles_2_2 &r1,
const AlgebraicKernel_2_2::Root_for_circles_2_2 &r2);}
{Calls the operator() of \ccc{AlgebraicKernel_2_2::Compare_Y}.}
\ccSeeAlso
\ccRefConceptPage{AlgebraicKernel_2_2::CompareY}
\end{ccRefFunction}
\begin{ccRefFunction}{compare_xy}
\ccFunction{template < class AlgebraicKernel_2_2>
Comparison_result compare_xy
(const AlgebraicKernel_2_2::Root_for_circles_2_2 &r1,
const AlgebraicKernel_2_2::Root_for_circles_2_2 &r2);}
{Calls the operator() of \ccc{AlgebraicKernel_2_2::Compare_XY}.}
\ccSeeAlso
\ccRefConceptPage{AlgebraicKernel_2_2::CompareXY}
\end{ccRefFunction}
\begin{ccRefFunction}{sign_at}
\ccFunction{template < class AlgebraicKernel_2_2, class OutputIterator >
OutputIterator sign_at
(const AlgebraicKernel_2_2::Polynomial_for_circles_2_2 &p,
const AlgebraicKernel_2_2::Root_for_circles_2_2 &r);}
{Calls the operator() of \ccc{AlgebraicKernel_2_2::Sign_at}.}
\ccSeeAlso
\ccRefConceptPage{AlgebraicKernel_2_2::SignAt}
\end{ccRefFunction}
%%%%%%%%%%%%%%%%%%%%%%%% constructions
\begin{ccRefFunction}{construct_polynomial_1_2}
\ccDefinition
\ccFunction{template < class AlgebraicKernel_2_2>
AlgebraicKernel_2_2::Polynomial_1_2
construct_polynomial_1_2
(AlgebraicKernel_2_2::RT a,
AlgebraicKernel_2_2::RT b,
AlgebraicKernel_2_2::RT c);}
{Calls the operator() of \ccc{AlgebraicKernel_2_2::ConstructPolynomial_1_2}.}
\end{ccRefFunction}
\begin{ccRefFunction}{construct_polynomial_for_circles_2_2}
\ccDefinition
\ccFunction{template < class AlgebraicKernel_2_2>
AlgebraicKernel_2_2::PolynomialForCircles_2_2
construct_polynomial_for_circles_2_2
(AlgebraicKernel_2_2::RT a,
AlgebraicKernel_2_2::RT b,
AlgebraicKernel_2_2::RT c);}
{Calls the operator() of \ccc{AlgebraicKernel_2_2::ConstructPolynomialForCircles_2_2}.}
\end{ccRefFunction}
\begin{ccRefFunction}{solve}
\ccDefinition
\ccFunction{template < class AlgebraicKernel_2_2, class OutputIterator >
OutputIterator solve
(const AlgebraicKernel_2_2::Polynomial_1_2 &p1,
const AlgebraicKernel_2_2::Polynomial_1_2 &p2,
OutputIterator res);}
{Calls the operator() of \ccc{AlgebraicKernel_2_2::Solve}.}
\ccFunction{template < class AlgebraicKernel_2_2, class OutputIterator >
OutputIterator solve
(const AlgebraicKernel_2_2::Polynomial_1_2 &p1,
const AlgebraicKernel_2_2::Polynomial_for_circles_2_2 &p2,
OutputIterator res);}
{Calls the operator() of \ccc{AlgebraicKernel_2_2::Solve}.}
\ccFunction{template < class AlgebraicKernel_2_2, class OutputIterator >
OutputIterator solve
(const AlgebraicKernel_2_2::Polynomial_for_circles_2_2 &p1,
const AlgebraicKernel_2_2::Polynomial_for_circles_2_2 &p2,
OutputIterator res);}
{Calls the operator() of \ccc{AlgebraicKernel_2_2::Solve}.}
\ccSeeAlso
\ccRefConceptPage{AlgebraicKernel_2_2::Solve}
\end{ccRefFunction}
\begin{ccRefFunction}{x_critical_points}
\ccFunction{template < class AlgebraicKernel_2_2, class OutputIterator >
OutputIterator
x_critical_points
(const typename AlgebraicKernel_2_2::Polynomial_for_circles_2_2 & c,
OutputIterator res);}
{Calls the operator() of \ccc{AlgebraicKernel_2_2::XCriticalPoints}.}
\end{ccRefFunction}
\begin{ccRefFunction}{x_critical_point}
\ccFunction{template < class AlgebraicKernel_2_2 >
AlgebraicKernel_2_2::Root_for_circles_2_2
x_critical_points(const typename AK::Polynomial_for_circles_2_2 & c,
bool i);}
{Calls the operator() of \ccc{AlgebraicKernel_2_2::XCriticalPoints}.}
\end{ccRefFunction}
\begin{ccRefFunction}{y_critical_points}
\ccFunction{template < class AlgebraicKernel_2_2, class OutputIterator >
OutputIterator
y_critical_points
(const typename AlgebraicKernel_2_2::Polynomial_for_circles_2_2 & c,
OutputIterator res);}
{Calls the operator() of \ccc{AlgebraicKernel_2_2::YCriticalPoints}.}
\end{ccRefFunction}
\begin{ccRefFunction}{y_critical_point}
\ccFunction{template < class AlgebraicKernel_2_2 >
AlgebraicKernel_2_2::Root_for_circles_2_2
x_critical_point(const typename AK::Polynomial_for_circles_2_2 & c,
bool i);}
{Calls the operator() of \ccc{AlgebraicKernel_2_2::YCriticalPoints}.}
\end{ccRefFunction}
\begin{ccRefFunction}{make_root_of_2}
\ccFunction{template < class RT >
Root_of_2<RT>
make_root_of_2(RT a, RT b, RT c, bool s);}
{Returns the smaller (resp. larger) root of equation $aX^2+bX+c=0$
if \ccc{s} is true (resp. false).
\ccc{RT} is supposed to be a \ccc{RingNumberType}, and \ccc{Root_of_2<RT>} is
the type given by \ccc{Root_of_traits_2<RT>}.}
\ccFunction{template < class RT >
Root_of_2<RT>
make_root_of_2(FT a, FT b, FT c, bool s);}
{.}
\footnote{groumpf. \ccc{Root_of_taits} is templated by RT but we also need (do we?) make-root-of with FT. Relation between RT and FT...?}
\ccSeeAlso
\ccRefIdfierPage{CGAL::Root_of_2<RT>}\\
\ccRefIdfierPage{CGAL::Root_of_traits_2<RT>}
\end{ccRefFunction}