mirror of https://github.com/CGAL/cgal
184 lines
5.2 KiB
TeX
184 lines
5.2 KiB
TeX
%%%%%%%%%%%%%% predicates
|
|
|
|
\begin{ccRefFunction}{compare_x}
|
|
|
|
\ccFunction{template < class AlgebraicKernel_2_2>
|
|
Comparison_result compare_x
|
|
(const AlgebraicKernel_2_2::Root_for_circles_2_2 &r1,
|
|
const AlgebraicKernel_2_2::Root_for_circles_2_2 &r2);}
|
|
{Calls the operator() of \ccc{AlgebraicKernel_2_2::Compare_X}.}
|
|
|
|
\ccSeeAlso
|
|
|
|
\ccRefConceptPage{AlgebraicKernel_2_2::CompareX}
|
|
|
|
\end{ccRefFunction}
|
|
|
|
\begin{ccRefFunction}{compare_y}
|
|
|
|
\ccFunction{template < class AlgebraicKernel_2_2>
|
|
Comparison_result compare_y
|
|
(const AlgebraicKernel_2_2::Root_for_circles_2_2 &r1,
|
|
const AlgebraicKernel_2_2::Root_for_circles_2_2 &r2);}
|
|
{Calls the operator() of \ccc{AlgebraicKernel_2_2::Compare_Y}.}
|
|
|
|
\ccSeeAlso
|
|
|
|
\ccRefConceptPage{AlgebraicKernel_2_2::CompareY}
|
|
|
|
\end{ccRefFunction}
|
|
|
|
\begin{ccRefFunction}{compare_xy}
|
|
|
|
\ccFunction{template < class AlgebraicKernel_2_2>
|
|
Comparison_result compare_xy
|
|
(const AlgebraicKernel_2_2::Root_for_circles_2_2 &r1,
|
|
const AlgebraicKernel_2_2::Root_for_circles_2_2 &r2);}
|
|
{Calls the operator() of \ccc{AlgebraicKernel_2_2::Compare_XY}.}
|
|
|
|
\ccSeeAlso
|
|
|
|
\ccRefConceptPage{AlgebraicKernel_2_2::CompareXY}
|
|
|
|
\end{ccRefFunction}
|
|
|
|
\begin{ccRefFunction}{sign_at}
|
|
|
|
\ccFunction{template < class AlgebraicKernel_2_2, class OutputIterator >
|
|
OutputIterator sign_at
|
|
(const AlgebraicKernel_2_2::Polynomial_for_circles_2_2 &p,
|
|
const AlgebraicKernel_2_2::Root_for_circles_2_2 &r);}
|
|
{Calls the operator() of \ccc{AlgebraicKernel_2_2::Sign_at}.}
|
|
|
|
\ccSeeAlso
|
|
|
|
\ccRefConceptPage{AlgebraicKernel_2_2::SignAt}
|
|
|
|
\end{ccRefFunction}
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%% constructions
|
|
\begin{ccRefFunction}{construct_polynomial_1_2}
|
|
|
|
\ccDefinition
|
|
|
|
\ccFunction{template < class AlgebraicKernel_2_2>
|
|
AlgebraicKernel_2_2::Polynomial_1_2
|
|
construct_polynomial_1_2
|
|
(AlgebraicKernel_2_2::RT a,
|
|
AlgebraicKernel_2_2::RT b,
|
|
AlgebraicKernel_2_2::RT c);}
|
|
{Calls the operator() of \ccc{AlgebraicKernel_2_2::ConstructPolynomial_1_2}.}
|
|
|
|
\end{ccRefFunction}
|
|
|
|
\begin{ccRefFunction}{construct_polynomial_for_circles_2_2}
|
|
|
|
\ccDefinition
|
|
|
|
\ccFunction{template < class AlgebraicKernel_2_2>
|
|
AlgebraicKernel_2_2::PolynomialForCircles_2_2
|
|
construct_polynomial_for_circles_2_2
|
|
(AlgebraicKernel_2_2::RT a,
|
|
AlgebraicKernel_2_2::RT b,
|
|
AlgebraicKernel_2_2::RT c);}
|
|
{Calls the operator() of \ccc{AlgebraicKernel_2_2::ConstructPolynomialForCircles_2_2}.}
|
|
|
|
\end{ccRefFunction}
|
|
|
|
\begin{ccRefFunction}{solve}
|
|
|
|
\ccDefinition
|
|
|
|
\ccFunction{template < class AlgebraicKernel_2_2, class OutputIterator >
|
|
OutputIterator solve
|
|
(const AlgebraicKernel_2_2::Polynomial_1_2 &p1,
|
|
const AlgebraicKernel_2_2::Polynomial_1_2 &p2,
|
|
OutputIterator res);}
|
|
{Calls the operator() of \ccc{AlgebraicKernel_2_2::Solve}.}
|
|
|
|
\ccFunction{template < class AlgebraicKernel_2_2, class OutputIterator >
|
|
OutputIterator solve
|
|
(const AlgebraicKernel_2_2::Polynomial_1_2 &p1,
|
|
const AlgebraicKernel_2_2::Polynomial_for_circles_2_2 &p2,
|
|
OutputIterator res);}
|
|
{Calls the operator() of \ccc{AlgebraicKernel_2_2::Solve}.}
|
|
|
|
\ccFunction{template < class AlgebraicKernel_2_2, class OutputIterator >
|
|
OutputIterator solve
|
|
(const AlgebraicKernel_2_2::Polynomial_for_circles_2_2 &p1,
|
|
const AlgebraicKernel_2_2::Polynomial_for_circles_2_2 &p2,
|
|
OutputIterator res);}
|
|
{Calls the operator() of \ccc{AlgebraicKernel_2_2::Solve}.}
|
|
\ccSeeAlso
|
|
|
|
\ccRefConceptPage{AlgebraicKernel_2_2::Solve}
|
|
|
|
\end{ccRefFunction}
|
|
|
|
\begin{ccRefFunction}{x_critical_points}
|
|
|
|
\ccFunction{template < class AlgebraicKernel_2_2, class OutputIterator >
|
|
OutputIterator
|
|
x_critical_points
|
|
(const typename AlgebraicKernel_2_2::Polynomial_for_circles_2_2 & c,
|
|
OutputIterator res);}
|
|
{Calls the operator() of \ccc{AlgebraicKernel_2_2::XCriticalPoints}.}
|
|
|
|
\end{ccRefFunction}
|
|
|
|
\begin{ccRefFunction}{x_critical_point}
|
|
|
|
\ccFunction{template < class AlgebraicKernel_2_2 >
|
|
AlgebraicKernel_2_2::Root_for_circles_2_2
|
|
x_critical_points(const typename AK::Polynomial_for_circles_2_2 & c,
|
|
bool i);}
|
|
{Calls the operator() of \ccc{AlgebraicKernel_2_2::XCriticalPoints}.}
|
|
|
|
\end{ccRefFunction}
|
|
|
|
\begin{ccRefFunction}{y_critical_points}
|
|
|
|
\ccFunction{template < class AlgebraicKernel_2_2, class OutputIterator >
|
|
OutputIterator
|
|
y_critical_points
|
|
(const typename AlgebraicKernel_2_2::Polynomial_for_circles_2_2 & c,
|
|
OutputIterator res);}
|
|
{Calls the operator() of \ccc{AlgebraicKernel_2_2::YCriticalPoints}.}
|
|
|
|
\end{ccRefFunction}
|
|
|
|
\begin{ccRefFunction}{y_critical_point}
|
|
|
|
\ccFunction{template < class AlgebraicKernel_2_2 >
|
|
AlgebraicKernel_2_2::Root_for_circles_2_2
|
|
x_critical_point(const typename AK::Polynomial_for_circles_2_2 & c,
|
|
bool i);}
|
|
{Calls the operator() of \ccc{AlgebraicKernel_2_2::YCriticalPoints}.}
|
|
|
|
\end{ccRefFunction}
|
|
|
|
\begin{ccRefFunction}{make_root_of_2}
|
|
|
|
\ccFunction{template < class RT >
|
|
Root_of_2<RT>
|
|
make_root_of_2(RT a, RT b, RT c, bool s);}
|
|
{Returns the smaller (resp. larger) root of equation $aX^2+bX+c=0$
|
|
if \ccc{s} is true (resp. false).
|
|
\ccc{RT} is supposed to be a \ccc{RingNumberType}, and \ccc{Root_of_2<RT>} is
|
|
the type given by \ccc{Root_of_traits_2<RT>}.}
|
|
|
|
\ccFunction{template < class RT >
|
|
Root_of_2<RT>
|
|
make_root_of_2(FT a, FT b, FT c, bool s);}
|
|
{.}
|
|
|
|
\footnote{groumpf. \ccc{Root_of_taits} is templated by RT but we also need (do we?) make-root-of with FT. Relation between RT and FT...?}
|
|
|
|
\ccSeeAlso
|
|
|
|
\ccRefIdfierPage{CGAL::Root_of_2<RT>}\\
|
|
\ccRefIdfierPage{CGAL::Root_of_traits_2<RT>}
|
|
|
|
\end{ccRefFunction}
|
|
|