cgal/Nef_3/archive/include/CGAL/Nef_3/Visualizor.h

942 lines
30 KiB
C++

// Copyright (c) 1997-2002 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Michael Seel <seel@mpi-sb.mpg.de>
// Miguel Granados <granados@mpi-sb.mpg.de>
// Susan Hert <hert@mpi-sb.mpg.de>
// Lutz Kettner <kettner@mpi-sb.mpg.de>
#ifndef CGAL_VISUALIZOR_OPENGL_3_H
#define CGAL_VISUALIZOR_OPENGL_3_H
#include <CGAL/basic.h>
#include <CGAL/IO/Color.h>
#include <CGAL/glu.h>
#include <GL/glut.h>
#include <cmath>
#include <cstdlib>
#include <cstdio>
#include <string>
#include <vector>
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Nef_3/SNC_structure.h>
#include <CGAL/Nef_3/SNC_decorator.h>
#include <CGAL/Nef_3/SNC_FM_decorator.h>
#undef CGAL_NEF_DEBUG
#define CGAL_NEF_DEBUG 157
#include <CGAL/Nef_2/debug.h>
#define CGAL_NEF3_MARKED_VERTEX_COLOR 183,232,92
#define CGAL_NEF3_MARKED_EDGE_COLOR 171,216,86
#define CGAL_NEF3_MARKED_FACET_COLOR 157,203,81
#define CGAL_NEF3_UNMARKED_VERTEX_COLOR 255,246,124
#define CGAL_NEF3_UNMARKED_EDGE_COLOR 255,236,94
#define CGAL_NEF3_UNMARKED_FACET_COLOR 249,215,44
namespace CGAL {
namespace OGL {
// ----------------------------------------------------------------------------
// Drawable double types:
// ----------------------------------------------------------------------------
typedef CGAL::Simple_cartesian<double> DKernel;
typedef DKernel::Point_3 Double_point;
typedef DKernel::Vector_3 Double_vector;
typedef DKernel::Segment_3 Double_segment;
typedef DKernel::Aff_transformation_3 Affine_3;
// DPoint = a double point including a mark
class DPoint : public Double_point {
bool m_;
public:
DPoint() {}
DPoint(const Double_point& p, bool m) : Double_point(p) { m_ = m; }
DPoint(const DPoint& p) : Double_point(p) { m_ = p.m_; }
DPoint& operator=(const DPoint& p)
{ Double_point::operator=(p); m_ = p.m_; return *this; }
bool mark() const { return m_; }
};
// DSegment = a double segment including a mark
class DSegment : public Double_segment {
bool m_;
public:
DSegment() {}
DSegment(const Double_segment& s, bool m) : Double_segment(s) { m_ = m; }
DSegment(const DSegment& s) : Double_segment(s) { m_ = s.m_; }
DSegment& operator=(const DSegment& s)
{ Double_segment::operator=(s); m_ = s.m_; return *this; }
bool mark() const { return m_; }
};
// Double_triple = a class that stores a triple of double
// coordinates; we need a pointer to the coordinates in a C array
// for OpenGL
class Double_triple {
typedef double* double_ptr;
typedef const double* const_double_ptr;
double coords_[3];
public:
Double_triple()
{ coords_[0]=coords_[1]=coords_[2]=0.0; }
Double_triple(double x, double y, double z)
{ coords_[0]=x; coords_[1]=y; coords_[2]=z; }
Double_triple(const Double_triple& t)
{ coords_[0]=t.coords_[0];
coords_[1]=t.coords_[1];
coords_[2]=t.coords_[2];
}
Double_triple& operator=(const Double_triple& t)
{ coords_[0]=t.coords_[0];
coords_[1]=t.coords_[1];
coords_[2]=t.coords_[2];
return *this; }
operator double_ptr() const
{ return const_cast<Double_triple&>(*this).coords_; }
double operator[](unsigned i)
{ CGAL_assertion(i<3); return coords_[i]; }
}; // Double_triple
static std::ostream& operator << (std::ostream& os,
const Double_triple& t)
{ os << "(" << t[0] << "," << t[1] << "," << t[2] << ")";
return os; }
// DFacet stores the facet cycle vertices in a continuus C array
// of three double components, this is necessary due to the OpenGL
// tesselator input format !
class DFacet {
typedef std::vector<Double_triple> Coord_vector;
typedef std::vector<unsigned> Cycle_vector;
Coord_vector coords_; // stores all vertex coordinates
Cycle_vector fc_ends_; // stores entry points of facet cycles
Double_triple normal_; // stores normal and mark of facet
bool mark_;
public:
typedef Coord_vector::iterator Coord_iterator;
typedef Coord_vector::const_iterator Coord_const_iterator;
DFacet() {}
void push_back_vertex(double x, double y, double z)
{ coords_.push_back(Double_triple(x,y,z)); }
DFacet(const DFacet& f)
{ coords_ = f.coords_;
fc_ends_ = f.fc_ends_;
normal_ = f.normal_;
mark_ = f.mark_;
}
DFacet& operator=(const DFacet& f)
{ coords_ = f.coords_;
fc_ends_ = f.fc_ends_;
normal_ = f.normal_;
mark_ = f.mark_;
return *this;
}
~DFacet()
{ coords_.clear(); fc_ends_.clear(); }
void push_back_vertex(const Double_point& p)
{ push_back_vertex(p.x(),p.y(),p.z()); }
void set_normal(double x, double y, double z, bool m)
{ double l = sqrt(x*x + y*y + z*z);
normal_ = Double_triple(x/l,y/l,z/l); mark_ = m; }
double dx() const { return normal_[0]; }
double dy() const { return normal_[1]; }
double dz() const { return normal_[2]; }
bool mark() const { return mark_; }
double* normal() const
{ return static_cast<double*>(normal_); }
void new_facet_cycle()
{ fc_ends_.push_back(coords_.size()); }
unsigned number_of_facet_cycles() const
{ return fc_ends_.size(); }
Coord_iterator facet_cycle_begin(unsigned i)
{ CGAL_assertion(i<number_of_facet_cycles());
if (i==0) return coords_.begin();
else return coords_.begin()+fc_ends_[i]; }
Coord_iterator facet_cycle_end(unsigned i)
{ CGAL_assertion(i<number_of_facet_cycles());
if (i<fc_ends_.size()-1) return coords_.begin()+fc_ends_[i+1];
else return coords_.end(); }
Coord_const_iterator facet_cycle_begin(unsigned i) const
{ CGAL_assertion(i<number_of_facet_cycles());
if (i==0) return coords_.begin();
else return coords_.begin()+fc_ends_[i]; }
Coord_const_iterator facet_cycle_end(unsigned i) const
{ CGAL_assertion(i<number_of_facet_cycles());
if (i<fc_ends_.size()-1) return coords_.begin()+fc_ends_[i+1];
else return coords_.end(); }
void debug(std::ostream& os = std::cerr) const
{ os << "DFacet, normal=" << normal_ << ", mark=" << mark() << std::endl;
for(unsigned i=0; i<number_of_facet_cycles(); ++i) {
os << " facet cycle ";
// put all vertices in facet cycle into contour:
Coord_const_iterator cit;
for(cit = facet_cycle_begin(i); cit != facet_cycle_end(i); ++cit)
os << *cit;
os << std::endl;
}
}
}; // DFacet
// ----------------------------------------------------------------------------
// OGL Drawable Polyhedron:
// ----------------------------------------------------------------------------
inline void beginCallback(GLenum which)
{ glBegin(which); }
inline void endCallback(void)
{ glEnd(); }
inline void errorCallback(GLenum errorCode)
{ const GLubyte *estring;
estring = gluErrorString(errorCode);
CGAL_error_msg( "Tessellation Error:" + std::string( estring ) );
}
inline void vertexCallback(GLvoid* vertex,
GLvoid* user)
{ GLdouble* pc(static_cast<GLdouble*>(vertex));
GLdouble* pu(static_cast<GLdouble*>(user));
CGAL_NEF_TRACEN("vertexCallback coord "<<pc[0]<<","<<pc[1]<<","<<pc[2]);
CGAL_NEF_TRACEN("vertexCallback normal "<<pu[0]<<","<<pu[1]<<","<<pu[2]);
glNormal3dv(pu);
glVertex3dv(pc);
}
class Polyhedron {
std::list<DPoint> vertices_;
std::list<DSegment> edges_;
std::list<DFacet> halffacets_;
GLuint object_list_;
bool init_, axes_, surface_;
Bbox_3 bbox_;
typedef std::list<DPoint>::const_iterator Vertex_iterator;
typedef std::list<DSegment>::const_iterator Edge_iterator;
typedef std::list<DFacet>::const_iterator Halffacet_iterator;
public:
Polyhedron() : bbox_(-1,-1,-1,1,1,1)
{ object_list_ = 0;
init_ = axes_ = false; surface_ = true; }
Polyhedron(const Polyhedron& p)
{ object_list_ = 0;
init_ = axes_ = false; surface_ = true; }
Polyhedron& operator=(const Polyhedron& p)
{ return *this; }
~Polyhedron()
{ if (object_list_) glDeleteLists(object_list_, 4); }
void push_back(const Double_point& p, bool m) {
vertices_.push_back(DPoint(p,m));
}
void push_back(const Double_segment& s, bool m)
{ edges_.push_back(DSegment(s,m)); }
void push_back(const DFacet& f)
{ halffacets_.push_back(f); }
void toggle_axes() { axes_ = !axes_; }
void skeleton_on() { surface_ = false; }
void boundary_on() { surface_ = true; }
bool is_initialized() const { return init_; }
Bbox_3 bbox() const { return bbox_; }
Bbox_3& bbox() { return bbox_; }
void draw(Vertex_iterator v) const
{ CGAL_NEF_TRACEN("drawing vertex "<<*v);
CGAL::Color cf(CGAL_NEF3_MARKED_VERTEX_COLOR),
ct(CGAL_NEF3_UNMARKED_VERTEX_COLOR); // more blue-ish
CGAL::Color c = v->mark() ? ct : cf;
glPointSize(10);
glColor3ub(c.red(), c.green(), c.blue());
glBegin(GL_POINTS);
glVertex3d(v->x(),v->y(),v->z());
glEnd();
}
void draw(Edge_iterator e) const
{ CGAL_NEF_TRACEN("drawing edge "<<*e);
Double_point p = e->source(), q = e->target();
CGAL::Color cf(CGAL_NEF3_MARKED_EDGE_COLOR),
ct(CGAL_NEF3_UNMARKED_EDGE_COLOR); // more blue-ish
CGAL::Color c = e->mark() ? ct : cf;
glLineWidth(5);
glColor3ub(c.red(),c.green(),c.blue());
glBegin(GL_LINE_STRIP);
glVertex3d(p.x(), p.y(), p.z());
glVertex3d(q.x(), q.y(), q.z());
glEnd();
}
void draw(Halffacet_iterator f) const
{ CGAL_NEF_TRACEN("drawing facet "<<(f->debug(),""));
GLUtesselator* tess_ = gluNewTess();
gluTessCallback(tess_, GLenum(GLU_TESS_VERTEX_DATA),
(GLvoid (*)()) &vertexCallback);
gluTessCallback(tess_, GLenum(GLU_TESS_BEGIN),
(GLvoid (*)()) &beginCallback);
gluTessCallback(tess_, GLenum(GLU_TESS_END),
(GLvoid (*)()) &endCallback);
gluTessCallback(tess_, GLenum(GLU_TESS_ERROR),
(GLvoid (*)()) &errorCallback);
gluTessProperty(tess_, GLenum(GLU_TESS_WINDING_RULE),
GLU_TESS_WINDING_POSITIVE);
DFacet::Coord_const_iterator cit;
CGAL::Color cf(CGAL_NEF3_MARKED_FACET_COLOR),
ct(CGAL_NEF3_UNMARKED_FACET_COLOR); // more blue-ish
CGAL::Color c = (f->mark() ? ct : cf);
glColor3ub(c.red(),c.green(),c.blue());
gluTessBeginPolygon(tess_,f->normal());
CGAL_NEF_TRACEN(" ");
CGAL_NEF_TRACEN("Begin Polygon");
gluTessNormal(tess_,f->dx(),f->dy(),f->dz());
// forall facet cycles of f:
for(unsigned i = 0; i < f->number_of_facet_cycles(); ++i) {
gluTessBeginContour(tess_);
CGAL_NEF_TRACEN(" Begin Contour");
// put all vertices in facet cycle into contour:
for(cit = f->facet_cycle_begin(i);
cit != f->facet_cycle_end(i); ++cit) {
gluTessVertex(tess_, *cit, *cit);
CGAL_NEF_TRACEN(" add Vertex");
}
gluTessEndContour(tess_);
CGAL_NEF_TRACEN(" End Contour");
}
gluTessEndPolygon(tess_);
CGAL_NEF_TRACEN("End Polygon");
gluDeleteTess(tess_);
}
void construct_axes() const
{
glLineWidth(2.0);
// red x-axis
glColor3f(1.0,0.0,0.0);
glBegin(GL_LINES);
glVertex3f(0.0,0.0,0.0);
glVertex3f(5.0,0.0,0.0);
glEnd();
// green y-axis
glColor3f(0.0,1.0,0.0);
glBegin(GL_LINES);
glVertex3f(0.0,0.0,0.0);
glVertex3f(0.0,5.0,0.0);
glEnd();
// blue z-axis and equator
glColor3f(0.0,0.0,1.0);
glBegin(GL_LINES);
glVertex3f(0.0,0.0,0.0);
glVertex3f(0.0,0.0,5.0);
glEnd();
// six coordinate points in pink:
glPointSize(10);
glBegin(GL_POINTS);
glColor3f(1.0,0.0,0.0);
glVertex3d(5,0,0);
glColor3f(0.0,1.0,0.0);
glVertex3d(0,5,0);
glColor3f(0.0,0.0,1.0);
glVertex3d(0,0,5);
glEnd();
}
void fill_display_lists()
{
glNewList(object_list_, GL_COMPILE);
Vertex_iterator v;
CGAL_forall_iterators(v,vertices_) draw(v);
glEndList();
glNewList(object_list_+1, GL_COMPILE);
Edge_iterator e;
CGAL_forall_iterators(e,edges_) draw(e);
glEndList();
glNewList(object_list_+2, GL_COMPILE);
Halffacet_iterator f;
CGAL_forall_iterators(f,halffacets_) draw(f);
glEndList();
glNewList(object_list_+3, GL_COMPILE); // axes:
construct_axes();
glEndList();
}
void initialize()
{ if (init_) return;
init_ = true;
axes_ = false;
object_list_ = glGenLists(4); CGAL_assertion(object_list_);
fill_display_lists();
}
void draw( GLdouble z_vec[3]) const
{
if (!is_initialized()) const_cast<Polyhedron&>(*this).initialize();
double l = (std::max)( (std::max)( bbox().xmax() - bbox().xmin(),
bbox().ymax() - bbox().ymin()),
bbox().zmax() - bbox().zmin());
if ( l < 1) // make sure that a single point doesn't screw up here
l = 1;
glScaled( 4.0/l, 4.0/l, 4.0/l);
glTranslated( -(bbox().xmax() + bbox().xmin()) / 2.0,
-(bbox().ymax() + bbox().ymin()) / 2.0,
-(bbox().zmax() + bbox().zmin()) / 2.0);
if ( surface_ ) {
//glEnable(GL_LIGHTING);
glCallList(object_list_+2); // facets
//glDisable(GL_LIGHTING);
}
// move edges and vertices a bit towards the view-point,
// i.e., 1/100th of the unit vector in camera space
double f = l / 4.0 / 100.0;
glTranslated( z_vec[0] * f, z_vec[1] * f, z_vec[2] * f);
glCallList(object_list_+1); // edges
glCallList(object_list_); // vertices
if (axes_) glCallList(object_list_+3); // axis
}
void debug(std::ostream& os = std::cerr) const
{
os << "OGL::Polyhedron" << std::endl;
os << "Vertices:" << std::endl;
Vertex_iterator v;
CGAL_forall_iterators(v,vertices_)
os << " "<<*v<<", mark="<<v->mark()<<std::endl;
os << "Edges:" << std::endl;
Edge_iterator e;
CGAL_forall_iterators(e,edges_)
os << " "<<*e<<", mark="<<e->mark()<<std::endl;
os << "Facets:" << std::endl;
Halffacet_iterator f;
CGAL_forall_iterators(f,halffacets_) f->debug(); os << std::endl;
os << std::endl;
}
}; // Polyhedron
// ----------------------------------------------------------------------------
// Viewer configuration:
// ----------------------------------------------------------------------------
enum MenuEntries { ROTATE, SCALE, TRANSLATE, TRANS_Z, RESET_CONTROL,
AXES, BOUNDARY, SKELETON, PERSP, FULLSCREEN, QUIT };
const double znear = 4.0;
const double zfar = 4.0;
const double eye = 6.0;
const double wsize = 2.0;
int window_width = 600; // Breite und
int window_height = 600; // Hoehe des Fensters
int window_radius = 300; // min(width,height) / 2
bool perspective = true;
int mouse_x, mouse_y; // Mauskoordinaten linker button
int interaction; // type of interaction in motion fct.
int motion_mode = ROTATE; // Bewegen der Maus bei Mouse1 gedrueckt
int submenu1, submenu2;
double dx = 0; // Translation
double dy = 0; // Translation
double dz = 0; // Translation in Z
double s = 0.4; // Skalierung
Affine_3 rotation( IDENTITY); // Rotation
long double factor_s; // Umrechnungsfaktor fuer Skalierung
// our draw object:
static std::vector<Polyhedron> polyhedra_;
static std::vector<std::string> titles_;
static Polyhedron& add_polyhedron()
{ polyhedra_.push_back(Polyhedron());
return polyhedra_.back(); }
static void show (int mode)
{
std::vector<Polyhedron>::iterator it;
switch(mode)
{
case ROTATE:
case SCALE:
case TRANSLATE:
case TRANS_Z:
motion_mode = mode;
break;
case RESET_CONTROL:
dx = dy = dz = 0.0;
s = 0.5;
rotation = Affine_3( IDENTITY);
motion_mode = ROTATE;
CGAL_forall_iterators(it,polyhedra_) it->initialize();
glutPostRedisplay();
break;
case AXES:
CGAL_forall_iterators(it,polyhedra_) it->toggle_axes();
glutPostRedisplay();
break;
case BOUNDARY:
CGAL_forall_iterators(it,polyhedra_) it->boundary_on();
//CGAL_forall_iterators(it,polyhedra_) it->draw();
glutPostRedisplay();
break;
case SKELETON:
CGAL_forall_iterators(it,polyhedra_) it->skeleton_on();
//CGAL_forall_iterators(it,polyhedra_) it->draw();
glutPostRedisplay();
break;
case PERSP:
perspective = ! perspective;
break;
case FULLSCREEN:
glutFullScreen();
break;
case QUIT:
std::exit(0);
}
}
// Mausknopf gedrueckt
static void mouse (int button, int state, int x, int y)
{
mouse_x = x;
mouse_y = y;
interaction = 0;
if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN) {
if ( GLUT_ACTIVE_SHIFT & glutGetModifiers())
interaction = SCALE;
else
interaction = motion_mode;
}
if (button == GLUT_MIDDLE_BUTTON && state == GLUT_DOWN)
if ( GLUT_ACTIVE_SHIFT & glutGetModifiers())
interaction = TRANS_Z;
else
interaction = TRANSLATE;
}
static Affine_3 virtual_sphere_transformation( double old_x, double old_y,
double new_x, double new_y) {
if ( old_x == new_x && old_y == new_y)// zero rotation.
return Affine_3( IDENTITY);
// Determine the projected vectors on the `sphere'.
double dd = old_x * old_x + old_y * old_y;
Double_vector v_old( old_x, old_y,
((dd < 0.5) ? std::sqrt(1-dd) : 0.5 / std::sqrt(dd)));
dd = new_x * new_x + new_y * new_y;
Double_vector v_new( new_x, new_y,
((dd < 0.5) ? std::sqrt(1-dd) : 0.5 / std::sqrt(dd)));
Double_vector axis = cross_product( v_old, v_new);
double angle = 0.0;
double norm = std::sqrt( (v_old*v_old)*(v_new*v_new));
if ( norm != 0) {
double x = v_old*v_new/ norm;
if ( x <= -1)
angle = CGAL_PI;
if ( x < 1)
angle = std::acos(x);
}
double len = std::sqrt( double(axis * axis));
double s = std::sin( angle / 2.0) / len;
double q1 = axis.x() * s; // quaternion
double q2 = axis.y() * s;
double q3 = axis.z() * s;
double q0 = std::cos( angle / 2.0);
double a = q1 * q2;
double b = q0 * q3;
double c = q1 * q3;
double d = q0 * q2;
double e = q2 * q3;
double f = q0 * q1;
double qq0 = q0 * q0;
double qq1 = q1 * q1;
double qq2 = q2 * q2;
double qq3 = q3 * q3;
return Affine_3( qq0 + qq1 - qq2 - qq3, 2 * (a-b), 2 * (c+d),
2 * (a+b), qq0 - qq1 + qq2 - qq3, 2 * (e-f),
2 * (c-d), 2 * (e+f), qq0 - qq1 - qq2 + qq3);
}
// Objekt rotieren, zoomen oder verschieben
static void motion (int x, int y)
{
switch ( interaction) {
case SCALE:
s *= exp( (x - mouse_x + mouse_y -y) * factor_s );
break;
case ROTATE: {
double old_x = 1.2 * (mouse_x - window_width/2) / window_radius;
double old_y = - 1.2 * (mouse_y - window_height/2) / window_radius;
double new_x = 1.2 * (x - window_width/2) / window_radius;
double new_y = - 1.2 * (y - window_height/2) / window_radius;
rotation = virtual_sphere_transformation( old_x, old_y, new_x, new_y)
* rotation;
}
break;
case TRANSLATE:
dx += (x - mouse_x) * 2.0 / window_radius;
dy -= (y - mouse_y) * 2.0 / window_radius;
break;
case TRANS_Z:
dz += (x - mouse_x + mouse_y -y) * 2.0 / window_radius;
break;
default:
break;
}
mouse_x = x;
mouse_y = y;
glutPostRedisplay();
}
static void initialize_olg()
{
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
/*
GLfloat light_ambient[4] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat light_diffuse[] = { 1.0, 1.0, 1.0, 1.0 }; // white diffuse light
GLfloat light_position[] = { 2.0, 3.0, -4.0, 0.0 }; // infinite location
//GLfloat light_position[] = { 3.0, 5.0, 4.5, 1.0};
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, 1);
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, light_ambient);
glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);
glLightfv(GL_LIGHT0, GL_POSITION, light_position);
glEnable(GL_LIGHT0);
GLfloat mat_ambient[4] = { 0.1, 0.1, 0.1, 1.0 };
//GLfloat mat_back_ambient[4] = { 0.2, 0.0, 0.0, 1.0 };
GLfloat mat_diffuse[4] = { 0.7, 0.7, 0.7, 1.0 };
//GLfloat mat_specular[4] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat mat_specular[4] = { 0.3, 0.3, 0.3, 1.0 };
GLfloat mat_shininess[] = { 100.0 };
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, mat_ambient );
//glMaterialfv(GL_BACK, GL_AMBIENT, mat_back_ambient );
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, mat_diffuse );
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, mat_specular );
glMaterialfv(GL_FRONT_AND_BACK, GL_SHININESS, mat_shininess );
*/
glDepthFunc( GL_LEQUAL);
glShadeModel( GL_FLAT);
glEnable(GL_AUTO_NORMAL);
glEnable(GL_DEPTH_TEST);
glEnable(GL_POINT_SMOOTH);
glEnable(GL_NORMALIZE);
//glColorMaterial(GL_FRONT_AND_BACK,GL_DIFFUSE);
//glEnable(GL_COLOR_MATERIAL);
}
static void enter_leave(int state)
{ glutPostRedisplay(); }
static void draw()
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
glPushMatrix();
if (window_width > window_height) {
double w = double( window_width) / double( window_height);
if ( perspective) {
double s = (eye - znear) / eye;
glFrustum( -wsize*w*s, wsize*w*s, -wsize*s, wsize*s,
eye-znear, eye+zfar);
glTranslated( 0.0, 0.0, -eye);
} else {
glOrtho( -wsize*w, wsize*w, -wsize, wsize, -znear, zfar );
}
} else {
double h = double( window_height) / double( window_width);
if ( perspective) {
double s = (eye - znear) / eye;
glFrustum( -wsize*s, wsize*s, -wsize*h*s, wsize*h*s,
eye-znear, eye+zfar);
glTranslated( 0.0, 0.0, -eye);
} else {
glOrtho( -wsize, wsize, -wsize*h, wsize*h, -znear, zfar );
}
}
glTranslated(dx,dy,dz);
glTranslated(0,0,1);
GLdouble M[16] = { rotation.m(0,0), rotation.m(1,0), rotation.m(2,0), 0.0,
rotation.m(0,1), rotation.m(1,1), rotation.m(2,1), 0.0,
rotation.m(0,2), rotation.m(1,2), rotation.m(2,2), 0.0,
rotation.m(0,3), rotation.m(1,3), rotation.m(2,3), 1.0};
glMultMatrixd( M);
glScaled(s,s,s);
GLdouble z_vec[3] = { rotation.m(2,0) / s,
rotation.m(2,1) / s,
rotation.m(2,2) / s};
int win = glutGetWindow();
polyhedra_[win-1].draw( z_vec);
glPopMatrix();
glutSwapBuffers();
}
static void reshape(int width, int height)
{
window_width = width;
window_height = height;
window_radius = (std::min)( width, height) / 2;
factor_s = std::log(2.0) / (window_radius/2.0); // radius == scale factor 2
glViewport(0, 0, (GLint)width, (GLint)height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
}
static void start_viewer()
{
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
glutInitWindowSize(window_width, window_height);
glutInitWindowPosition(0,0);
int submenu1 = glutCreateMenu(show);
glutAddMenuEntry("Reset",RESET_CONTROL);
glutAddMenuEntry("Rotate",ROTATE);
glutAddMenuEntry("Scale",SCALE);
glutAddMenuEntry("Translate in XY",TRANSLATE);
glutAddMenuEntry("Translate in Z",TRANS_Z);
int submenu2 = glutCreateMenu(show);
glutAddMenuEntry("Boundary",BOUNDARY);
glutAddMenuEntry("Skeleton",SKELETON);
glutAddMenuEntry("Toggle Axes",AXES);
for (unsigned i = 0; i < polyhedra_.size(); ++i) {
if (i > 0 ) glutInitWindowPosition(i*(window_width+12),0);
if ( i < titles_.size() ) glutCreateWindow(titles_[i].c_str());
else glutCreateWindow(" Polyhedron ");
glutEntryFunc(enter_leave);
initialize_olg();
glutDisplayFunc(draw);
glutReshapeFunc(reshape);
glutMouseFunc(mouse);
glutMotionFunc(motion);
glutCreateMenu(show);
glutAddSubMenu("Control",submenu1);
glutAddSubMenu("Render",submenu2);
glutAddMenuEntry("Persp/Ortho",PERSP);
glutAddMenuEntry("Fullscreen",FULLSCREEN);
glutAddMenuEntry("Quit",QUIT);
glutAttachMenu(GLUT_RIGHT_BUTTON);
}
glutMainLoop();
}
} // namespace OGL
// ----------------------------------------------------------------------------
// SNC_visualizor_OGL<SNC_>
// when you define a SNC_visualizor_OGL<SNC_> object then you create a
// viewer window that shows the corresponding SNC_ object. All such viewers
// follow the same visualization motion. Thus visualizing binary operations
// is easy: just display the two input SNCs and the output SNC
//
// for similar viewer code see Nef_S2/demo/Nef_S2/Nef_polyhedron_S2-demo.C
// ----------------------------------------------------------------------------
template<typename Nef_polyhedron>
class Visualizor_OpenGL_3 {
typedef typename Nef_polyhedron::SNC_structure SNC_structure;
typedef CGAL::SNC_decorator<SNC_structure> Base;
typedef CGAL::SNC_FM_decorator<SNC_structure> FM_decorator;
CGAL::OGL::Polyhedron* ppoly_;
public:
typedef typename SNC_structure::Vertex_const_iterator Vertex_const_iterator;
typedef typename SNC_structure::Halfedge_const_iterator Halfedge_const_iterator;
typedef typename SNC_structure::Halffacet_const_iterator Halffacet_const_iterator;
typedef typename SNC_structure::Halffacet_cycle_const_iterator Halffacet_cycle_const_iterator;
typedef typename SNC_structure::Object_const_handle Object_const_handle;
typedef typename SNC_structure::SHalfedge_const_handle SHalfedge_const_handle;
typedef typename SNC_structure::SHalfloop_const_handle SHalfloop_const_handle;
typedef typename SNC_structure::Vertex_const_handle Vertex_const_handle;
typedef typename SNC_structure::Halfedge_const_handle Halfedge_const_handle;
typedef typename SNC_structure::Halffacet_const_handle Halffacet_const_handle;
typedef typename SNC_structure::Point_3 Point_3;
typedef typename SNC_structure::Vector_3 Vector_3;
typedef typename SNC_structure::Segment_3 Segment_3;
typedef typename SNC_structure::Plane_3 Plane_3;
typedef typename SNC_structure::Mark Mark;
typedef typename SNC_structure::SHalfedge_around_facet_const_circulator
SHalfedge_around_facet_const_circulator;
Nef_polyhedron N;
Visualizor_OpenGL_3(const Nef_polyhedron& Nef) : N(Nef) {
ppoly_ = & CGAL::OGL::add_polyhedron();
}
OGL::Double_point double_point(const Point_3& p) const
{ return OGL::Double_point(CGAL::to_double(p.x()),
CGAL::to_double(p.y()),
CGAL::to_double(p.z())); }
OGL::Double_segment double_segment(const Segment_3& s) const
{ return OGL::Double_segment(double_point(s.source()),
double_point(s.target())); }
void draw(Vertex_const_handle v) const
{
Point_3 bp = v->point();
CGAL_NEF_TRACEN("vertex " << bp);
ppoly_->push_back(double_point(bp), v->mark());
}
void draw(Halfedge_const_handle e) const
{
Vertex_const_handle s = e->source();
Vertex_const_handle t = e->twin()->source();
Segment_3 seg(s->point(), t->point());
CGAL_NEF_TRACEN("edge " << seg);
ppoly_->push_back(double_segment(seg), e->mark());
}
void draw(Halffacet_const_handle f) const
{ OGL::DFacet g;
Halffacet_cycle_const_iterator fc; // all facet cycles:
CGAL_forall_facet_cycles_of(fc,f)
if ( fc.is_shalfedge() ) { // non-trivial facet cycle
g.new_facet_cycle();
SHalfedge_const_handle h = fc;
SHalfedge_around_facet_const_circulator hc(h), he(hc);
CGAL_For_all(hc,he){ // all vertex coordinates in facet cycle
Point_3 sp = hc->source()->source()->point();
CGAL_NEF_TRACEN(" ");CGAL_NEF_TRACEN("facet" << sp);
g.push_back_vertex(double_point(sp));
}
}
Vector_3 v = f->plane().orthogonal_vector();
g.set_normal(CGAL::to_double(v.x()),
CGAL::to_double(v.y()),
CGAL::to_double(v.z()),
f->mark());
ppoly_->push_back(g);
}
// Returns the bounding box of the finite vertices of the polyhedron.
// Returns $[-1,+1]^3$ as bounding box if no finite vertex exists.
Bbox_3 bounded_bbox() const {
bool first_vertex = true;
Bbox_3 bbox( -1.0, -1.0, -1.0, 1.0, 1.0, 1.0);
Vertex_const_iterator vi;
CGAL_forall_vertices(vi, N) {
Point_3 p = vi->point();
double x = CGAL::to_double(p.hx());
double y = CGAL::to_double(p.hy());
double z = CGAL::to_double(p.hz());
double w = CGAL::to_double(p.hw());
if (N.is_standard(vi)) {
if(first_vertex) {
bbox = Bbox_3(x/w, y/w, z/w, x/w, y/w, z/w);
first_vertex = false;
} else {
bbox = bbox + Bbox_3(x/w, y/w, z/w, x/w, y/w, z/w);
first_vertex = false;
}
}
}
return bbox;
}
void set_R(const Bbox_3 bbox) const {
if(N.is_standard_kernel()) return;
double size = abs(bbox.xmin());
if(size < bbox.xmax()) size = bbox.xmax();
if(size < bbox.ymin()) size = bbox.ymin();
if(size < bbox.ymax()) size = bbox.ymax();
if(size < bbox.zmin()) size = bbox.zmin();
if(size < bbox.zmax()) size = bbox.zmax();
N.set_size_of_infimaximal_box(size*10);
CGAL_NEF_TRACEN("set infi box size to " << size);
}
void draw() const {
Bbox_3 bbox(bounded_bbox());
ppoly_->bbox() = bbox;
set_R(bbox);
Vertex_const_iterator v;
CGAL_forall_vertices(v,*N.sncp()) draw(v);
Halfedge_const_iterator e;
CGAL_forall_edges(e,*N.sncp()) draw(e);
Halffacet_const_iterator f;
CGAL_forall_facets(f,*N.sncp()) draw(f);
}
}; // Visualizor_OpenGL_3
} //namespace CGAL
#endif //CGAL_VISUALIZOR_OPENGL_3_H