cgal/Kernel_d/doc_tex/Kernel_d_ref/Homogeneous_d.tex

22 lines
868 B
TeX

\begin{ccRefClass}{Homogeneous_d<RingNumberType>}
\ccInclude{CGAL/Homogeneous_d.h}
\ccDefinition
A model for a \ccc{Kernel_d} using homogeneous coordinates to represent the
geometric objects. In order for \ccRefName\ to model Euclidean geometry
in $E^d$, for some mathematical ring $E$ (\textit{e.g.},
the integers \Z\ or the rationals \Q), the template parameter \ccc{RT}
must model the mathematical ring $E$. That is, the ring operations on this
number type must compute the mathematically correct results. If the number
type provided as a model for \ccc{RingNumberType} is only an approximation of a
ring (such as the built-in type \ccc{double}), then the geometry provided by
the kernel is only an approximation of Euclidean geometry.
\ccIsModel
\ccRefConceptPage{Kernel_d}
\ccSeeAlso
\ccRefIdfierPage{CGAL::Cartesian_d<FieldNumberType>}
\end{ccRefClass}