cgal/NewKernel_d/include/CGAL/Lazy.h

1931 lines
54 KiB
C++

// Copyright (c) 2005,2006 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Andreas Fabri, Sylvain Pion
#ifndef CGAL_LAZY_H
#define CGAL_LAZY_H
#include <CGAL/basic.h>
#include <CGAL/Handle.h>
#include <CGAL/Object.h>
#include <CGAL/Kernel/Type_mapper.h>
#include <CGAL/Profile_counter.h>
#include <CGAL/Kernel/Return_base_tag.h>
#include <CGAL/min_max_n.h>
#include <CGAL/Origin.h>
#include <CGAL/Bbox_2.h>
#include <CGAL/Bbox_3.h>
#include <vector>
#include <CGAL/transforming_iterator.h>
#include <CGAL/Default.h>
#include <boost/mpl/has_xxx.hpp>
#ifdef CGAL_HAS_THREADS
# include <boost/thread/tss.hpp>
#endif
namespace CGAL {
namespace internal {
BOOST_MPL_HAS_XXX_TRAIT_DEF(AT)
BOOST_MPL_HAS_XXX_TRAIT_DEF(ET)
}
template <typename AT, typename ET, typename EFT, typename E2A> class Lazy;
template <typename ET_>
class Lazy_exact_nt;
template <typename AT, typename ET, typename EFT, typename E2A>
inline
const AT&
approx(const Lazy<AT,ET, EFT, E2A>& l)
{
return l.approx();
}
// Where is this one (non-const) needed ? Is it ?
template <typename AT, typename ET, typename EFT, typename E2A>
inline
AT&
approx(Lazy<AT,ET, EFT, E2A>& l)
{
return l.approx();
}
template <typename AT, typename ET, typename EFT, typename E2A>
inline
const ET&
exact(const Lazy<AT,ET,EFT,E2A>& l)
{
return l.exact();
}
template <typename AT, typename ET, typename EFT, typename E2A>
inline
unsigned
depth(const Lazy<AT,ET,EFT,E2A>& l)
{
return l.depth();
}
/*
#define CGAL_LAZY_FORWARD(T) \
inline T const & approx(T const& d) { return d; } \
inline T const & exact (T const& d) { return d; } \
inline unsigned depth (T const& ) { return 0; }
CGAL_LAZY_FORWARD(double)
CGAL_LAZY_FORWARD(float)
CGAL_LAZY_FORWARD(int)
CGAL_LAZY_FORWARD(unsigned)
CGAL_LAZY_FORWARD(Return_base_tag)
CGAL_LAZY_FORWARD(Null_vector)
CGAL_LAZY_FORWARD(Origin)
CGAL_LAZY_FORWARD(Orientation)
CGAL_LAZY_FORWARD(Bbox_2)
CGAL_LAZY_FORWARD(Bbox_3)
*/
template<class T>
inline T const & approx(T const& d) { return d; };
template<class T>
inline T const & exact (T const& d) { return d; };
template<class T>
inline unsigned depth (T const& ) { return 0; };
#ifdef CGAL_LAZY_KERNEL_DEBUG
template <class T>
void
print_at(std::ostream& os, const T& at)
{
os << at;
}
template <class T>
void
print_at(std::ostream& os, const std::vector<T>& at)
{
os << "std::vector";
}
template <>
void
print_at(std::ostream& os, const Object& o)
{
os << "Object";
}
template <class T1, class T2>
void
print_at(std::ostream& os, const std::pair<T1,T2> & at)
{
os << "[ " << at.first << " | " << at.second << " ]" << std::endl ;
}
template <typename AT, typename ET, typename EFT, typename E2A>
inline
void
print_dag(const Lazy<AT,ET,EFT,E2A>& l, std::ostream& os, int level = 0)
{
l.print_dag(os, level);
}
inline
void
print_dag(double d, std::ostream& os, int level)
{
for(int i = 0; i < level; i++)
os << " ";
os << d << std::endl;
}
inline
void
msg(std::ostream& os, int level, char* s)
{
for(int i = 0; i < level; i++)
os << " ";
os << s << std::endl;
}
inline
void
print_dag(const Null_vector& nv, std::ostream& os, int level)
{
for(int i = 0; i < level; i++)
os << " ";
os << "Null_vector" << std::endl;
}
inline
void
print_dag(const Origin& nv, std::ostream& os, int level)
{
for(int i = 0; i < level; i++)
os << " ";
os << "Origin" << std::endl;
}
#endif
struct Depth_base {
#ifdef CGAL_PROFILE
unsigned depth_;
Depth_base() { set_depth(0); }
unsigned depth() const { return depth_; }
void set_depth(unsigned i)
{
depth_ = i;
CGAL_HISTOGRAM_PROFILER(std::string("[Lazy_kernel DAG depths]"), i);
//(unsigned) ::log2(double(i)));
}
#else
unsigned depth() const { return 0; }
void set_depth(unsigned) {}
#endif
};
// Abstract base class for lazy numbers and lazy objects
template <typename AT_, typename ET, typename E2A>
class Lazy_rep : public Rep, public Depth_base
{
Lazy_rep (const Lazy_rep&); // cannot be copied.
public:
typedef AT_ AT;
mutable AT at;
mutable ET *et;
Lazy_rep ()
: at(), et(NULL) {}
Lazy_rep (const AT& a)
: at(a), et(NULL) {}
Lazy_rep (const AT& a, const ET& e)
: at(a), et(new ET(e)) {}
const AT& approx() const
{
return at;
}
AT& approx()
{
return at;
}
const ET & exact() const
{
if (et==NULL)
update_exact();
return *et;
}
ET & exact()
{
if (et==NULL)
update_exact();
return *et;
}
#ifdef CGAL_LAZY_KERNEL_DEBUG
void print_at_et(std::ostream& os, int level) const
{
for(int i = 0; i < level; i++){
os << " ";
}
os << "Approximation: ";
print_at(os, at);
os << std::endl;
if(! is_lazy()){
for(int i = 0; i < level; i++){
os << " ";
}
os << "Exact: ";
print_at(os, *et);
os << std::endl;
}
}
virtual void print_dag(std::ostream& os, int level) const {}
#endif
bool is_lazy() const { return et == NULL; }
virtual void update_exact() const = 0;
virtual ~Lazy_rep() { delete et; }
};
//____________________________________________________________
// The rep for the leaf node
// FIXME TODO : Factorize all the Lazy_rep_[0-8] !!!
template <typename AT, typename ET, typename E2A>
class Lazy_rep_0 : public Lazy_rep<AT, ET, E2A>
{
typedef Lazy_rep<AT, ET, E2A> Base;
public:
void
update_exact() const
{
this->et = new ET();
}
Lazy_rep_0()
: Lazy_rep<AT,ET, E2A>() {}
Lazy_rep_0(const AT& a, const ET& e)
: Lazy_rep<AT,ET,E2A>(a, e) {}
Lazy_rep_0(const AT& a, void*)
: Lazy_rep<AT,ET,E2A>(a) {}
Lazy_rep_0(const ET& e)
: Lazy_rep<AT,ET,E2A>(E2A()(e), e) {}
void
print_dag(std::ostream& os, int level) const
{
this->print_at_et(os, level);
}
};
//____________________________________________________________
template <typename AC, typename EC, typename E2A, typename L1>
class Lazy_rep_1
: public Lazy_rep<typename decay<typename AC::result_type>::type, typename decay<typename EC::result_type>::type, E2A>
, private EC
{
typedef typename decay<typename AC::result_type>::type AT;
typedef typename decay<typename EC::result_type>::type ET;
typedef Lazy_rep<AT, ET, E2A> Base;
mutable L1 l1_;
const EC& ec() const { return *this; }
public:
void
update_exact() const
{
this->et = new ET(ec()(CGAL::exact(l1_)));
this->at = E2A()(*(this->et));
// Prune lazy tree
l1_ = L1();
}
Lazy_rep_1(const AC& ac, const EC& ec, const L1& l1)
: Lazy_rep<AT,ET, E2A>(ac(CGAL::approx(l1))), EC(ec), l1_(l1)
{
this->set_depth(CGAL::depth(l1_) + 1);
}
#ifdef CGAL_LAZY_KERNEL_DEBUG
void
print_dag(std::ostream& os, int level) const
{
this->print_at_et(os, level);
if(this->is_lazy()){
CGAL::msg(os, level, "DAG with one child node:");
CGAL::print_dag(l1_, os, level+1);
}
}
#endif
};
//____________________________________________________________
template <typename AC, typename EC, typename E2A, typename L1, typename L2>
class Lazy_rep_2
: public Lazy_rep<typename decay<typename AC::result_type>::type, typename decay<typename EC::result_type>::type, E2A>
, private EC
{
typedef typename decay<typename AC::result_type>::type AT;
typedef typename decay<typename EC::result_type>::type ET;
typedef Lazy_rep<AT, ET, E2A> Base;
mutable L1 l1_;
mutable L2 l2_;
const EC& ec() const { return *this; }
public:
void
update_exact() const
{
this->et = new ET(ec()(CGAL::exact(l1_), CGAL::exact(l2_)));
this->at = E2A()(*(this->et));
// Prune lazy tree
l1_ = L1();
l2_ = L2();
}
Lazy_rep_2(const AC& ac, const EC& /*ec*/, const L1& l1, const L2& l2)
: Lazy_rep<AT,ET,E2A>(ac(CGAL::approx(l1), CGAL::approx(l2))),
l1_(l1), l2_(l2)
{
this->set_depth(max_n(CGAL::depth(l1_), CGAL::depth(l2_)) + 1);
}
#ifdef CGAL_LAZY_KERNEL_DEBUG
void
print_dag(std::ostream& os, int level) const
{
this->print_at_et(os, level);
if(this->is_lazy()){
CGAL::msg(os, level, "DAG with two child nodes:");
CGAL::print_dag(l1_, os, level+1);
CGAL::print_dag(l2_, os, level+1);
}
}
#endif
};
//____________________________________________________________
template <typename AC, typename EC, typename E2A,
typename L1, typename L2, typename L3>
class Lazy_rep_3
: public Lazy_rep<typename decay<typename AC::result_type>::type, typename decay<typename EC::result_type>::type, E2A>
, private EC
{
typedef typename decay<typename AC::result_type>::type AT;
typedef typename decay<typename EC::result_type>::type ET;
typedef Lazy_rep<AT, ET, E2A> Base;
mutable L1 l1_;
mutable L2 l2_;
mutable L3 l3_;
const EC& ec() const { return *this; }
public:
void
update_exact() const
{
this->et = new ET(ec()(CGAL::exact(l1_), CGAL::exact(l2_),
CGAL::exact(l3_)));
this->at = E2A()(*(this->et));
// Prune lazy tree
l1_ = L1();
l2_ = L2();
l3_ = L3();
}
Lazy_rep_3(const AC& ac, const EC& /*ec*/,
const L1& l1, const L2& l2, const L3& l3)
: Lazy_rep<AT,ET,E2A>(ac(CGAL::approx(l1), CGAL::approx(l2),
CGAL::approx(l3))),
l1_(l1), l2_(l2), l3_(l3)
{
this->set_depth(max_n(CGAL::depth(l1_),
CGAL::depth(l2_),
CGAL::depth(l3_)) + 1);
}
#ifdef CGAL_LAZY_KERNEL_DEBUG
void
print_dag(std::ostream& os, int level) const
{
this->print_at_et(os, level);
if(this->is_lazy()){
CGAL::msg(os, level, "DAG with three child nodes:");
CGAL::print_dag(l1_, os, level+1);
CGAL::print_dag(l2_, os, level+1);
CGAL::print_dag(l3_, os, level+1);
}
}
#endif
};
//____________________________________________________________
template <typename AC, typename EC, typename E2A,
typename L1, typename L2, typename L3, typename L4>
class Lazy_rep_4
: public Lazy_rep<typename AC::result_type, typename EC::result_type, E2A>
, private EC
{
typedef typename AC::result_type AT;
typedef typename EC::result_type ET;
typedef Lazy_rep<AT, ET, E2A> Base;
mutable L1 l1_;
mutable L2 l2_;
mutable L3 l3_;
mutable L4 l4_;
const EC& ec() const { return *this; }
public:
void
update_exact() const
{
this->et = new ET(ec()(CGAL::exact(l1_), CGAL::exact(l2_),
CGAL::exact(l3_), CGAL::exact(l4_)));
this->at = E2A()(*(this->et));
// Prune lazy tree
l1_ = L1();
l2_ = L2();
l3_ = L3();
l4_ = L4();
}
Lazy_rep_4(const AC& ac, const EC& /*ec*/,
const L1& l1, const L2& l2, const L3& l3, const L4& l4)
: Lazy_rep<AT,ET,E2A>(ac(CGAL::approx(l1), CGAL::approx(l2),
CGAL::approx(l3), CGAL::approx(l4))),
l1_(l1), l2_(l2), l3_(l3), l4_(l4)
{
this->set_depth(max_n(CGAL::depth(l1_),
CGAL::depth(l2_),
CGAL::depth(l3_),
CGAL::depth(l4_)) + 1);
}
#ifdef CGAL_LAZY_KERNEL_DEBUG
void
print_dag(std::ostream& os, int level) const
{
this->print_at_et(os, level);
if(this->is_lazy()){
CGAL::msg(os, level, "DAG with four child nodes:");
CGAL::print_dag(l1_, os, level+1);
CGAL::print_dag(l2_, os, level+1);
CGAL::print_dag(l3_, os, level+1);
CGAL::print_dag(l4_, os, level+1);
}
}
#endif
};
//____________________________________________________________
template <typename AC, typename EC, typename E2A,
typename L1, typename L2, typename L3, typename L4, typename L5>
class Lazy_rep_5
: public Lazy_rep<typename AC::result_type, typename EC::result_type, E2A>
, private EC
{
typedef typename AC::result_type AT;
typedef typename EC::result_type ET;
typedef Lazy_rep<AT, ET, E2A> Base;
mutable L1 l1_;
mutable L2 l2_;
mutable L3 l3_;
mutable L4 l4_;
mutable L5 l5_;
const EC& ec() const { return *this; }
public:
void
update_exact() const
{
this->et = new ET(ec()(CGAL::exact(l1_), CGAL::exact(l2_),
CGAL::exact(l3_), CGAL::exact(l4_),
CGAL::exact(l5_)));
this->at = E2A()(*(this->et));
// Prune lazy tree
l1_ = L1();
l2_ = L2();
l3_ = L3();
l4_ = L4();
l5_ = L5();
}
Lazy_rep_5(const AC& ac, const EC& /*ec*/,
const L1& l1, const L2& l2, const L3& l3, const L4& l4,
const L5& l5)
: Lazy_rep<AT,ET,E2A>(ac(CGAL::approx(l1), CGAL::approx(l2),
CGAL::approx(l3), CGAL::approx(l4),
CGAL::approx(l5))),
l1_(l1), l2_(l2), l3_(l3), l4_(l4), l5_(l5)
{
this->set_depth(max_n(CGAL::depth(l1_),
CGAL::depth(l2_),
CGAL::depth(l3_),
CGAL::depth(l4_),
CGAL::depth(l5_)) + 1);
}
#ifdef CGAL_LAZY_KERNEL_DEBUG
void
print_dag(std::ostream& os, int level) const
{
this->print_at_et(os, level);
if(this->is_lazy()){
CGAL::msg(os, level, "DAG with five child nodes:");
CGAL::print_dag(l1_, os, level+1);
CGAL::print_dag(l2_, os, level+1);
CGAL::print_dag(l3_, os, level+1);
CGAL::print_dag(l4_, os, level+1);
CGAL::print_dag(l5_, os, level+1);
}
}
#endif
};
template <typename AC, typename EC, typename E2A,
typename L1, typename L2, typename L3, typename L4,
typename L5, typename L6>
class Lazy_rep_6
: public Lazy_rep<typename AC::result_type, typename EC::result_type, E2A>
, private EC
{
typedef typename AC::result_type AT;
typedef typename EC::result_type ET;
typedef Lazy_rep<AT, ET, E2A> Base;
mutable L1 l1_;
mutable L2 l2_;
mutable L3 l3_;
mutable L4 l4_;
mutable L5 l5_;
mutable L6 l6_;
const EC& ec() const { return *this; }
public:
void
update_exact() const
{
this->et = new ET(ec()(CGAL::exact(l1_), CGAL::exact(l2_),
CGAL::exact(l3_), CGAL::exact(l4_),
CGAL::exact(l5_), CGAL::exact(l6_)));
this->at = E2A()(*(this->et));
// Prune lazy tree
l1_ = L1();
l2_ = L2();
l3_ = L3();
l4_ = L4();
l5_ = L5();
l6_ = L6();
}
Lazy_rep_6(const AC& ac, const EC& /*ec*/,
const L1& l1, const L2& l2, const L3& l3, const L4& l4,
const L5& l5, const L6& l6)
: Lazy_rep<AT,ET,E2A>(ac(CGAL::approx(l1), CGAL::approx(l2),
CGAL::approx(l3), CGAL::approx(l4),
CGAL::approx(l5), CGAL::approx(l6))),
l1_(l1), l2_(l2), l3_(l3), l4_(l4), l5_(l5), l6_(l6)
{
this->set_depth(max_n(CGAL::depth(l1_),
CGAL::depth(l2_),
CGAL::depth(l3_),
CGAL::depth(l4_),
CGAL::depth(l5_),
CGAL::depth(l6_)) + 1);
}
#ifdef CGAL_LAZY_KERNEL_DEBUG
void
print_dag(std::ostream& os, int level) const
{
this->print_at_et(os, level);
if(this->is_lazy()){
CGAL::msg(os, level, "DAG with 6 child nodes:");
CGAL::print_dag(l1_, os, level+1);
CGAL::print_dag(l2_, os, level+1);
CGAL::print_dag(l3_, os, level+1);
CGAL::print_dag(l4_, os, level+1);
CGAL::print_dag(l5_, os, level+1);
CGAL::print_dag(l6_, os, level+1);
}
}
#endif
};
template <typename AC, typename EC, typename E2A,
typename L1, typename L2, typename L3, typename L4,
typename L5, typename L6, typename L7>
class Lazy_rep_7
: public Lazy_rep<typename AC::result_type, typename EC::result_type, E2A>
, private EC
{
typedef typename AC::result_type AT;
typedef typename EC::result_type ET;
typedef Lazy_rep<AT, ET, E2A> Base;
mutable L1 l1_;
mutable L2 l2_;
mutable L3 l3_;
mutable L4 l4_;
mutable L5 l5_;
mutable L6 l6_;
mutable L7 l7_;
const EC& ec() const { return *this; }
public:
void
update_exact() const
{
this->et = new ET(ec()(CGAL::exact(l1_), CGAL::exact(l2_),
CGAL::exact(l3_), CGAL::exact(l4_),
CGAL::exact(l5_), CGAL::exact(l6_),
CGAL::exact(l7_)));
this->at = E2A()(*(this->et));
// Prune lazy tree
l1_ = L1();
l2_ = L2();
l3_ = L3();
l4_ = L4();
l5_ = L5();
l6_ = L6();
l7_ = L7();
}
Lazy_rep_7(const AC& ac, const EC& /*ec*/,
const L1& l1, const L2& l2, const L3& l3, const L4& l4,
const L5& l5, const L6& l6, const L7& l7)
: Lazy_rep<AT,ET,E2A>(ac(CGAL::approx(l1), CGAL::approx(l2),
CGAL::approx(l3), CGAL::approx(l4),
CGAL::approx(l5), CGAL::approx(l6),
CGAL::approx(l7))),
l1_(l1), l2_(l2), l3_(l3), l4_(l4), l5_(l5), l6_(l6), l7_(l7)
{
this->set_depth(max_n(CGAL::depth(l1_),
CGAL::depth(l2_),
CGAL::depth(l3_),
CGAL::depth(l4_),
CGAL::depth(l5_),
CGAL::depth(l6_),
CGAL::depth(l7_)) + 1);
}
#ifdef CGAL_LAZY_KERNEL_DEBUG
void
print_dag(std::ostream& os, int level) const
{
this->print_at_et(os, level);
if(this->is_lazy()){
CGAL::msg(os, level, "DAG with 7 child nodes:");
CGAL::print_dag(l1_, os, level+1);
CGAL::print_dag(l2_, os, level+1);
CGAL::print_dag(l3_, os, level+1);
CGAL::print_dag(l4_, os, level+1);
CGAL::print_dag(l5_, os, level+1);
CGAL::print_dag(l6_, os, level+1);
CGAL::print_dag(l7_, os, level+1);
}
}
#endif
};
template <typename AC, typename EC, typename E2A,
typename L1, typename L2, typename L3, typename L4,
typename L5, typename L6, typename L7, typename L8>
class Lazy_rep_8
: public Lazy_rep<typename AC::result_type, typename EC::result_type, E2A>
, private EC
{
typedef typename AC::result_type AT;
typedef typename EC::result_type ET;
typedef Lazy_rep<AT, ET, E2A> Base;
mutable L1 l1_;
mutable L2 l2_;
mutable L3 l3_;
mutable L4 l4_;
mutable L5 l5_;
mutable L6 l6_;
mutable L7 l7_;
mutable L8 l8_;
const EC& ec() const { return *this; }
public:
void
update_exact() const
{
this->et = new ET(ec()(CGAL::exact(l1_), CGAL::exact(l2_),
CGAL::exact(l3_), CGAL::exact(l4_),
CGAL::exact(l5_), CGAL::exact(l6_),
CGAL::exact(l7_), CGAL::exact(l8_)));
this->at = E2A()(*(this->et));
// Prune lazy tree
l1_ = L1();
l2_ = L2();
l3_ = L3();
l4_ = L4();
l5_ = L5();
l6_ = L6();
l7_ = L7();
l8_ = L8();
}
Lazy_rep_8(const AC& ac, const EC& /*ec*/,
const L1& l1, const L2& l2, const L3& l3, const L4& l4,
const L5& l5, const L6& l6, const L7& l7, const L8& l8)
: Lazy_rep<AT,ET,E2A>(ac(CGAL::approx(l1), CGAL::approx(l2),
CGAL::approx(l3), CGAL::approx(l4),
CGAL::approx(l5), CGAL::approx(l6),
CGAL::approx(l7), CGAL::approx(l8))),
l1_(l1), l2_(l2), l3_(l3), l4_(l4), l5_(l5), l6_(l6), l7_(l7), l8_(l8)
{
this->set_depth(max_n(CGAL::depth(l1_),
CGAL::depth(l2_),
CGAL::depth(l3_),
CGAL::depth(l4_),
CGAL::depth(l5_),
CGAL::depth(l6_),
CGAL::depth(l7_),
CGAL::depth(l8_)) + 1);
}
#ifdef CGAL_LAZY_KERNEL_DEBUG
void
print_dag(std::ostream& os, int level) const
{
this->print_at_et(os, level);
if(this->is_lazy()){
CGAL::msg(os, level, "DAG with 8 child nodes:");
CGAL::print_dag(l1_, os, level+1);
CGAL::print_dag(l2_, os, level+1);
CGAL::print_dag(l3_, os, level+1);
CGAL::print_dag(l4_, os, level+1);
CGAL::print_dag(l5_, os, level+1);
CGAL::print_dag(l6_, os, level+1);
CGAL::print_dag(l7_, os, level+1);
CGAL::print_dag(l8_, os, level+1);
}
}
#endif
};
template < typename K1, typename K2 >
struct Approx_converter
{
typedef Approx_converter<K1,K2> Self;
typedef K1 Source_kernel;
typedef K2 Target_kernel;
//typedef Converter Number_type_converter;
Approx_converter(){}
Approx_converter(K1 const&,K2 const&){}
//TODO: check that it is normal that we never need k1 or k2 here
template<class,bool/*ET*/,bool/*iter*/> struct result_;
template<class T,bool b> struct result_<T,true,b> {
typedef typename T::AT const& type;
};
template<class T> struct result_<T,false,true> {
typedef transforming_iterator<Self,T> type;
};
template<class,bool=true> struct result;
template<class T,bool b> struct result<Self(T),b> : result_<T,internal::has_AT<T>::value,is_iterator<T>::value>{};
template<bool b> struct result<Self(Null_vector),b>{typedef Null_vector type;};
template<bool b> struct result<Self(Bbox_2),b>{typedef Bbox_2 type;};
template<bool b> struct result<Self(Bbox_3),b>{typedef Bbox_3 type;};
template < typename T >
const typename T::AT&
operator()(const T&t) const
{ return t.approx(); }
template <class It>
transforming_iterator<Self,typename boost::enable_if<is_iterator<It>,It>::type>
operator()(const It& i) const
{
return make_transforming_iterator(i,*this);
}
const Null_vector&
operator()(const Null_vector& n) const
{ return n; }
const Bbox_2&
operator()(const Bbox_2& b) const
{ return b; }
const Bbox_3&
operator()(const Bbox_3& b) const
{ return b; }
};
template < typename K1, typename K2 >
struct Exact_converter
{
typedef Exact_converter<K1,K2> Self;
typedef K1 Source_kernel;
typedef K2 Target_kernel;
//typedef Converter Number_type_converter;
Exact_converter(){}
Exact_converter(K1 const&,K2 const&){}
//TODO: check that it is normal that we never need k1 or k2 here
template<class,bool/*ET*/,bool/*iter*/> struct result_;
template<class T,bool b> struct result_<T,true,b> {
typedef typename T::ET const& type;
};
template<class T> struct result_<T,false,true> {
typedef transforming_iterator<Self,T> type;
};
template<class,bool=true> struct result;
template<class T,bool b> struct result<Self(T),b> : result_<T,internal::has_ET<T>::value,is_iterator<T>::value>{};
template<bool b> struct result<Self(Null_vector),b>{typedef Null_vector type;};
template<bool b> struct result<Self(Bbox_2),b>{typedef Bbox_2 type;};
template<bool b> struct result<Self(Bbox_3),b>{typedef Bbox_3 type;};
template < typename T >
const typename T::ET&
operator()(const T&t) const
{ return t.exact(); }
template <class It>
transforming_iterator<Self,typename boost::enable_if<is_iterator<It>,It>::type>
operator()(const It& i) const
{
return make_transforming_iterator(i,*this);
}
const Null_vector&
operator()(const Null_vector& n) const
{ return n; }
const Bbox_2&
operator()(const Bbox_2& b) const
{ return b; }
const Bbox_3&
operator()(const Bbox_3& b) const
{ return b; }
};
//____________________________________________________________
template <typename AC, typename EC, typename E2A, typename L1>
class Lazy_rep_with_vector_1
: public Lazy_rep<std::vector<Object>, std::vector<Object>, E2A>
, private EC
{
typedef std::vector<Object> AT;
typedef std::vector<Object> ET;
typedef Lazy_rep<AT, ET, E2A> Base;
mutable L1 l1_;
const EC& ec() const { return *this; }
public:
void
update_exact() const
{
// TODO : This looks really unfinished...
std::vector<Object> vec;
this->et = new ET();
//this->et->reserve(this->at.size());
ec()(CGAL::exact(l1_), std::back_inserter(*(this->et)));
if(this->et==NULL)
E2A()(*(this->et));
this->at = E2A()(*(this->et));
// Prune lazy tree
l1_ = L1();
}
Lazy_rep_with_vector_1(const AC& ac, const EC& /*ec*/, const L1& l1)
: l1_(l1)
{
ac(CGAL::approx(l1), std::back_inserter(this->at));
}
#ifdef CGAL_LAZY_KERNEL_DEBUG
void
print_dag(std::ostream& os, int level) const
{
this->print_at_et(os, level);
os << "A Lazy_rep_with_vector_1 of size " << this->at.size() << std::endl;
if(this->is_lazy()){
CGAL::msg(os, level, "DAG with one child node:");
CGAL::print_dag(l1_, os, level+1);
}
}
#endif
};
template <typename AC, typename EC, typename E2A, typename L1, typename L2>
class Lazy_rep_with_vector_2
: public Lazy_rep<std::vector<Object>, std::vector<Object>, E2A>
, private EC
{
typedef std::vector<Object> AT;
typedef std::vector<Object> ET;
typedef Lazy_rep<AT, ET, E2A> Base;
mutable L1 l1_;
mutable L2 l2_;
const EC& ec() const { return *this; }
public:
void
update_exact() const
{
this->et = new ET();
this->et->reserve(this->at.size());
ec()(CGAL::exact(l1_), CGAL::exact(l2_), std::back_inserter(*(this->et)));
this->at = E2A()(*(this->et));
// Prune lazy tree
l1_ = L1();
l2_ = L2();
}
Lazy_rep_with_vector_2(const AC& ac, const EC& /*ec*/, const L1& l1, const L2& l2)
: l1_(l1), l2_(l2)
{
ac(CGAL::approx(l1), CGAL::approx(l2), std::back_inserter(this->at));
}
#ifdef CGAL_LAZY_KERNEL_DEBUG
void
print_dag(std::ostream& os, int level) const
{
this->print_at_et(os, level);
os << "A Lazy_rep_with_vector_2 of size " << this->at.size() << std::endl;
if(this->is_lazy()){
CGAL::msg(os, level, "DAG with two child nodes:");
CGAL::print_dag(l1_, os, level+1);
CGAL::print_dag(l2_, os, level+1);
}
}
#endif
};
template <typename AC, typename EC, typename E2A, typename L1, typename L2, typename R1>
class Lazy_rep_2_1
: public Lazy_rep<typename R1::AT, typename R1::ET, E2A>
, private EC
{
typedef typename R1::AT AT;
typedef typename R1::ET ET;
typedef Lazy_rep<AT, ET, E2A> Base;
mutable L1 l1_;
mutable L2 l2_;
const EC& ec() const { return *this; }
public:
void
update_exact() const
{
this->et = new ET();
ec()(CGAL::exact(l1_), CGAL::exact(l2_), *(this->et));
this->at = E2A()(*(this->et));
// Prune lazy tree
l1_ = L1();
l2_ = L2();
}
Lazy_rep_2_1(const AC& ac, const EC& /*ec*/, const L1& l1, const L2& l2)
: Lazy_rep<AT,ET,E2A>(), l1_(l1), l2_(l2)
{
ac(CGAL::approx(l1), CGAL::approx(l2), this->at);
}
#ifdef CGAL_LAZY_KERNEL_DEBUG
void
print_dag(std::ostream& os, int level) const
{
this->print_at_et(os, level);
os << "A Lazy_rep_2_1" << std::endl;
if(this->is_lazy()){
CGAL::msg(os, level, "DAG with two child nodes:");
CGAL::print_dag(l1_, os, level+1);
CGAL::print_dag(l2_, os, level+1);
}
}
#endif
};
//____________________________________________________________________________________
// The following rep class stores two non-const reference parameters of type R1 and R2
template <typename AC, typename EC, typename E2A, typename L1, typename L2, typename R1, typename R2>
class Lazy_rep_2_2
: public Lazy_rep<std::pair<typename R1::AT,typename R2::AT>, std::pair<typename R1::ET, typename R2::ET>, E2A>
, private EC
{
typedef std::pair<typename R1::AT, typename R2::AT> AT;
typedef std::pair<typename R1::ET, typename R2::ET> ET;
typedef Lazy_rep<AT, ET, E2A> Base;
mutable L1 l1_;
mutable L2 l2_;
const EC& ec() const { return *this; }
public:
void
update_exact() const
{
this->et = new ET();
ec()(CGAL::exact(l1_), CGAL::exact(l2_), this->et->first, this->et->second );
this->at = E2A()(*(this->et));
// Prune lazy tree
l1_ = L1();
l2_ = L2();
}
Lazy_rep_2_2(const AC& ac, const EC& /*ec*/, const L1& l1, const L2& l2)
: Lazy_rep<AT,ET,E2A>(), l1_(l1), l2_(l2)
{
ac(CGAL::approx(l1), CGAL::approx(l2), this->at.first, this->at.second);
}
#ifdef CGAL_LAZY_KERNEL_DEBUG
void
print_dag(std::ostream& os, int level) const
{
this->print_at_et(os, level);
os << "A Lazy_rep_2_2" << std::endl;
if(this->is_lazy()){
CGAL::msg(os, level, "DAG with two child nodes:");
CGAL::print_dag(l1_, os, level+1);
CGAL::print_dag(l2_, os, level+1);
}
}
#endif
};
//____________________________________________________________
// The handle class
template <typename AT_, typename ET_, typename EFT, typename E2A>
class Lazy : public Handle
{
public :
typedef Lazy<AT_, ET_, EFT, E2A> Self;
typedef Lazy_rep<AT_, ET_, E2A> Self_rep;
typedef AT_ AT; // undocumented
typedef ET_ ET; // undocumented
typedef AT Approximate_type;
typedef ET Exact_type;
/*
typedef Self Rep;
const Rep& rep() const
{
return *this;
}
Rep& rep()
{
return *this;
}
*/
Lazy()
: Handle(zero()) {}
// Before Lazy::zero() used Boost.Thread, the definition of Lazy() was:
// Lazy()
// #ifndef CGAL_HAS_THREAD
// : Handle(zero()) {}
// #else
// {
// PTR = new Lazy_rep_0<AT, ET, E2A>();
// }
// #endif
Lazy(Self_rep *r)
{
PTR = r;
}
Lazy(const ET& e)
{
PTR = new Lazy_rep_0<AT,ET,E2A>(e);
}
const AT& approx() const
{ return ptr()->approx(); }
const ET& exact() const
{ return ptr()->exact(); }
AT& approx()
{ return ptr()->approx(); }
ET& exact()
{ return ptr()->exact(); }
unsigned depth() const
{
return ptr()->depth();
}
void print_dag(std::ostream& os, int level) const
{
ptr()->print_dag(os, level);
}
private:
// We have a static variable for optimizing the default constructor,
// which is in particular heavily used for pruning DAGs.
static const Self & zero()
{
#ifdef CGAL_HAS_THREADS
static boost::thread_specific_ptr<Self> z;
if (z.get() == NULL) {
z.reset(new Self(new Lazy_rep_0<AT, ET, E2A>()));
}
return * z.get();
#else
static const Self z = new Lazy_rep_0<AT, ET, E2A>();
return z;
#endif
}
Self_rep * ptr() const { return (Self_rep*) PTR; }
};
// The magic functor for Construct_bbox_[2,3], as there is no Lazy<Bbox>
template <typename LK, typename AC, typename EC>
struct Lazy_construction_bbox
{
static const bool Protection = true;
typedef typename LK::Approximate_kernel AK;
typedef typename LK::Exact_kernel EK;
typedef typename AC::result_type result_type;
AC ac;
EC ec;
template <typename L1>
result_type operator()(const L1& l1) const
{
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
// Protection is outside the try block as VC8 has the CGAL_CFG_FPU_ROUNDING_MODE_UNWINDING_VC_BUG
Protect_FPU_rounding<Protection> P;
try {
return ac(CGAL::approx(l1));
} catch (Uncertain_conversion_exception) {
CGAL_BRANCH_PROFILER_BRANCH(tmp);
Protect_FPU_rounding<!Protection> P2(CGAL_FE_TONEAREST);
return ec(CGAL::exact(l1));
}
}
};
template <typename LK, typename AC, typename EC>
struct Lazy_construction_nt {
static const bool Protection = true;
typedef typename LK::Approximate_kernel AK;
typedef typename LK::Exact_kernel EK;
typedef typename LK::E2A E2A;
typedef typename decay<typename AC::result_type>::type AT;
typedef typename decay<typename EC::result_type>::type ET;
typedef Lazy_exact_nt<ET> result_type;
AC ac;
EC ec;
Lazy_construction_nt(){}
Lazy_construction_nt(LK const&k):ac(k.approximate_kernel()),ec(k.exact_kernel()){}
template <typename L1>
result_type operator()(const L1& l1) const
{
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
Protect_FPU_rounding<Protection> P;
try {
return new Lazy_rep_1<AC, EC, To_interval<ET>, L1>(ac, ec, l1);
} catch (Uncertain_conversion_exception) {
CGAL_BRANCH_PROFILER_BRANCH(tmp);
Protect_FPU_rounding<!Protection> P2(CGAL_FE_TONEAREST);
return new Lazy_rep_0<AT,ET,To_interval<ET> >(ec(CGAL::exact(l1)));
}
}
template <typename L1, typename L2>
result_type operator()(const L1& l1, const L2& l2) const
{
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
Protect_FPU_rounding<Protection> P;
try {
return new Lazy_rep_2<AC, EC, To_interval<ET>, L1,L2>(ac, ec, l1,l2);
} catch (Uncertain_conversion_exception) {
CGAL_BRANCH_PROFILER_BRANCH(tmp);
Protect_FPU_rounding<!Protection> P2(CGAL_FE_TONEAREST);
return new Lazy_rep_0<AT,ET,To_interval<ET> >(ec(CGAL::exact(l1), CGAL::exact(l2)));
}
}
template <typename L1, typename L2, typename L3>
result_type operator()(const L1& l1, const L2& l2, const L3& l3) const
{
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
Protect_FPU_rounding<Protection> P;
try {
return new Lazy_rep_3<AC, EC, To_interval<ET>, L1,L2,L3>(ac, ec, l1,l2,l3);
} catch (Uncertain_conversion_exception) {
CGAL_BRANCH_PROFILER_BRANCH(tmp);
Protect_FPU_rounding<!Protection> P2(CGAL_FE_TONEAREST);
return new Lazy_rep_0<AT,ET,To_interval<ET> >(ec(CGAL::exact(l1), CGAL::exact(l2), CGAL::exact(l3)));
}
}
template <typename L1, typename L2, typename L3, typename L4>
result_type operator()(const L1& l1, const L2& l2, const L3& l3, const L4& l4) const
{
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
Protect_FPU_rounding<Protection> P;
try {
return new Lazy_rep_4<AC, EC, To_interval<ET>, L1,L2,L3,L4>(ac, ec, l1,l2,l3,l4);
} catch (Uncertain_conversion_exception) {
CGAL_BRANCH_PROFILER_BRANCH(tmp);
Protect_FPU_rounding<!Protection> P2(CGAL_FE_TONEAREST);
return new Lazy_rep_0<AT,ET,To_interval<ET> >(ec(CGAL::exact(l1), CGAL::exact(l2), CGAL::exact(l3), CGAL::exact(l4)));
}
}
template <typename L1, typename L2, typename L3, typename L4, typename L5>
result_type operator()(const L1& l1, const L2& l2, const L3& l3, const L4& l4, const L5& l5) const
{
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
Protect_FPU_rounding<Protection> P;
try {
return new Lazy_rep_5<AC, EC, To_interval<ET>, L1,L2,L3,L4,L5>(ac, ec, l1,l2,l3,l4,l5);
} catch (Uncertain_conversion_exception) {
CGAL_BRANCH_PROFILER_BRANCH(tmp);
Protect_FPU_rounding<!Protection> P2(CGAL_FE_TONEAREST);
return new Lazy_rep_0<AT,ET,To_interval<ET> >(ec(CGAL::exact(l1), CGAL::exact(l2), CGAL::exact(l3), CGAL::exact(l4), CGAL::exact(l5)));
}
}
};
template <typename LK>
Object
make_lazy(const Object& eto)
{
typedef typename LK::Approximate_kernel AK;
typedef typename LK::Exact_kernel EK;
typedef typename LK::E2A E2A;
if (eto.is_empty())
return Object();
#define CGAL_Kernel_obj(X) \
if (const typename EK::X* ptr = object_cast<typename EK::X>(&eto)) \
return make_object(typename LK::X(new Lazy_rep_0<typename AK::X, typename EK::X, E2A>(*ptr)));
#include <CGAL/Kernel/interface_macros.h>
std::cerr << "object_cast inside Lazy_construction_rep::operator() failed. It needs more else if's (#2)" << std::endl;
std::cerr << "dynamic type of the Object : " << eto.type().name() << std::endl;
return Object();
}
// This functor selects the i'th element in a vector of Object's
// and casts it to what is in the Object
template <typename T2>
struct Ith {
typedef T2 result_type;
// We keep a Sign member object
// for future utilisation, in case
// we have pairs of 2 T2 objects e.g.
// for a numeric_point vector returned
// from a construction of a possible
// lazy algebraic kernel
int i;
Sign sgn;
Ith(int i_)
: i(i_)
{sgn=NEGATIVE;}
Ith(int i_, bool b_)
: i(i_)
{ sgn= (b_) ? POSITIVE : ZERO;}
const T2&
operator()(const std::vector<Object>& v) const
{
if(sgn==NEGATIVE)
return *object_cast<T2>(&v[i]);
typedef std::pair<T2,unsigned int > Pair_type_1;
typedef std::pair<T2,std::pair<bool,bool> > Pair_type_2;
if(const Pair_type_1 *p1 = object_cast<Pair_type_1>(&v[i]))
return p1->first;
else if(const Pair_type_2 *p2 = object_cast<Pair_type_2>(&v[i]))
return p2->first;
CGAL_error_msg( " Unexpected encapsulated type ");
}
};
template <typename LK, typename AC, typename EC>
struct Lazy_cartesian_const_iterator_2
{
typedef typename LK::Approximate_kernel AK;
typedef typename LK::Exact_kernel EK;
typedef typename LK::Cartesian_const_iterator_2 result_type;
AC ac;
EC ec;
public:
template < typename L1>
result_type
operator()(const L1& l1) const
{
return result_type(&l1);
}
template < typename L1>
result_type
operator()(const L1& l1, int i) const
{
return result_type(&l1,i);
}
};
template <typename LK, typename AC, typename EC>
struct Lazy_cartesian_const_iterator_3
{
typedef typename LK::Approximate_kernel AK;
typedef typename LK::Exact_kernel EK;
typedef typename LK::Cartesian_const_iterator_3 result_type;
AC ac;
EC ec;
public:
template < typename L1>
result_type
operator()(const L1& l1) const
{
return result_type(&l1);
}
template < typename L1>
result_type
operator()(const L1& l1, int i) const
{
return result_type(&l1,i);
}
};
// This is the magic functor for functors that write their result in a reference argument
// In a first version we assume that the references are of type Lazy<Something>,
// and that the result type is void
template <typename LK, typename AK, typename EK, typename AC, typename EC, typename EFT, typename E2A>
struct Lazy_functor_2_1
{
static const bool Protection = true;
typedef void result_type;
AC ac;
EC ec;
public:
template <typename L1, typename L2, typename R1>
void
operator()(const L1& l1, const L2& l2, R1& r1) const
{
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
Protect_FPU_rounding<Protection> P;
try {
// we suppose that R1 is a Lazy<Something>
r1 = R1(new Lazy_rep_2_1<AC, EC, E2A, L1, L2, R1>(ac, ec, l1, l2));
} catch (Uncertain_conversion_exception) {
CGAL_BRANCH_PROFILER_BRANCH(tmp);
Protect_FPU_rounding<!Protection> P2(CGAL_FE_TONEAREST);
typename R1::ET et;
ec(CGAL::exact(l1), CGAL::exact(l2), et);
r1 = R1(new Lazy_rep_0<typename R1::AT,typename R1::ET,E2A>(et));
}
}
};
template <typename T>
struct First
{
typedef typename T::first_type result_type;
const typename T::first_type&
operator()(const T& p) const
{
return p.first;
}
};
template <typename T>
struct Second
{
typedef typename T::second_type result_type;
const typename T::second_type&
operator()(const T& p) const
{
return p.second;
}
};
// This is the magic functor for functors that write their result in a reference argument
// In a first version we assume that the references are of type Lazy<Something>,
// and that the result type is void
//template <typename LK, typename AK, typename EK, typename AC, typename EC, typename EFT, typename E2A>
template <typename LK, typename AC, typename EC>
struct Lazy_functor_2_2
{
static const bool Protection = true;
typedef void result_type;
typedef typename LK::Approximate_kernel AK;
typedef typename LK::Exact_kernel EK;
typedef typename EK::FT EFT;
typedef typename LK::E2A E2A;
AC ac;
EC ec;
public:
template <typename L1, typename L2, typename R1, typename R2>
void
operator()(const L1& l1, const L2& l2, R1& r1, R2& r2) const
{
typedef Lazy<typename R1::AT, typename R1::ET, EFT, E2A> Handle_1;
typedef Lazy<typename R2::AT, typename R2::ET, EFT, E2A> Handle_2;
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
Protect_FPU_rounding<Protection> P;
try {
typedef Lazy<std::pair<typename R1::AT, typename R2::AT>, std::pair<typename R1::ET, typename R2::ET>, EFT, E2A> Lazy_pair;
Lazy_pair lv(new Lazy_rep_2_2<AC, EC, E2A, L1, L2, R1, R2>(ac, ec, l1, l2));
// lv->approx() is a std::pair<R1::AT, R2::AT>;
r1 = R1(Handle_1(new Lazy_rep_1<First<std::pair<typename R1::AT, typename R2::AT> >, First<std::pair<typename R1::ET, typename R2::ET> >, E2A, Lazy_pair>(First<std::pair<typename R1::AT, typename R2::AT> >(), First<std::pair<typename R1::ET, typename R2::ET> >(), lv)));
r2 = R2(Handle_2(new Lazy_rep_1<Second<std::pair<typename R1::AT, typename R2::AT> >, Second<std::pair<typename R1::ET, typename R2::ET> >, E2A, Lazy_pair>(Second<std::pair<typename R1::AT, typename R2::AT> >(), Second<std::pair<typename R1::ET, typename R2::ET> >(), lv)));
} catch (Uncertain_conversion_exception) {
CGAL_BRANCH_PROFILER_BRANCH(tmp);
Protect_FPU_rounding<!Protection> P2(CGAL_FE_TONEAREST);
typename R1::ET et1, et2;
ec(CGAL::exact(l1), CGAL::exact(l2), et1, et2);
r1 = R1(Handle_1(new Lazy_rep_0<typename R1::AT,typename R1::ET,E2A>(et1)));
r2 = R2(Handle_2(new Lazy_rep_0<typename R2::AT,typename R2::ET,E2A>(et2)));
}
}
};
// This is the magic functor for functors that write their result as Objects into an output iterator
template <typename LK, typename AC, typename EC>
struct Lazy_intersect_with_iterators
{
static const bool Protection = true;
typedef typename LK::Approximate_kernel AK;
typedef typename LK::Exact_kernel EK;
typedef typename EK::FT EFT;
typedef typename LK::E2A E2A;
typedef void result_type;
typedef Lazy<Object, Object, EFT, E2A> Lazy_object;
typedef Lazy<std::vector<Object>, std::vector<Object>, EFT, E2A> Lazy_vector;
AC ac;
EC ec;
public:
// In the example we intersect two Lazy<Segment>s
// and write into a back_inserter(list<Object([Lazy<Point>,Lazy<Segment>]) >)
template <typename L1, typename L2, typename OutputIterator>
OutputIterator
operator()(const L1& l1, const L2& l2, OutputIterator it) const
{
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
Protect_FPU_rounding<Protection> P;
try {
Lazy_vector lv(new Lazy_rep_with_vector_2<AC, EC, E2A, L1, L2>(ac, ec, l1, l2));
// lv.approx() is a std::vector<Object([AK::Point_2,AK::Segment_2])>
// that is, when we get here we have constructed all approximate results
for (unsigned int i = 0; i < lv.approx().size(); i++) {
// FIXME : I'm not sure how this work...
#define CGAL_Kernel_obj(X) if (object_cast<typename AK::X>(& (lv.approx()[i]))) { \
*it++ = make_object(typename LK::X(new Lazy_rep_1<Ith<typename AK::X>, \
Ith<typename EK::X>, E2A, Lazy_vector> \
(Ith<typename AK::X>(i), Ith<typename EK::X>(i), lv))); \
continue; \
}
#include <CGAL/Kernel/interface_macros.h>
std::cerr << "we need more casts" << std::endl;
}
} catch (Uncertain_conversion_exception) {
CGAL_BRANCH_PROFILER_BRANCH(tmp);
// TODO: Instead of using a vector, write an iterator adapter
Protect_FPU_rounding<!Protection> P2(CGAL_FE_TONEAREST);
std::vector<Object> exact_objects;
ec(CGAL::exact(l1), CGAL::exact(l2), std::back_inserter(exact_objects));
for (std::vector<Object>::const_iterator oit = exact_objects.begin();
oit != exact_objects.end();
++oit){
*it++ = make_lazy<LK>(*oit);
}
}
return it;
}
};
template <typename T>
struct Object_cast
{
typedef T result_type;
const T&
operator()(const Object& o) const
{
return *object_cast<T>(&o);
}
};
// The following functor returns an Object with a Lazy<Something> inside
// As the nested kernels return Objects of AK::Something and EK::Something
// we have to unwrap them from the Object, and wrap them in a Lazy<Something>
//
// TODO: write operators for other than two arguments. For the current kernel we only need two for Intersect_2
template <typename LK, typename AC, typename EC>
struct Lazy_construction_object
{
static const bool Protection = true;
typedef typename LK::Approximate_kernel AK;
typedef typename LK::Exact_kernel EK;
typedef typename EK::FT EFT;
typedef typename LK::E2A E2A;
typedef typename AC::result_type AT;
typedef typename EC::result_type ET;
typedef Object result_type;
typedef Lazy<Object, Object, EFT, E2A> Lazy_object;
AC ac;
EC ec;
public:
template <typename L1>
result_type
operator()(const L1& l1) const
{
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
Protect_FPU_rounding<Protection> P;
try {
Lazy_object lo(new Lazy_rep_1<AC, EC, E2A, L1>(ac, ec, l1));
if(lo.approx().is_empty())
return Object();
#define CGAL_Kernel_obj(X) \
if (object_cast<typename AK::X>(& (lo.approx()))) { \
typedef Lazy_rep_1<Object_cast<typename AK::X>, Object_cast<typename EK::X>, E2A, Lazy_object> Lcr; \
Lcr * lcr = new Lcr(Object_cast<typename AK::X>(), Object_cast<typename EK::X>(), lo); \
return make_object(typename LK::X(lcr)); \
}
#include <CGAL/Kernel/interface_macros.h>
std::cerr << "object_cast inside Lazy_construction_rep::operator() failed. It needs more else if's (#1)" << std::endl;
std::cerr << "dynamic type of the Object : " << lo.approx().type().name() << std::endl;
} catch (Uncertain_conversion_exception) {
CGAL_BRANCH_PROFILER_BRANCH(tmp);
Protect_FPU_rounding<!Protection> P2(CGAL_FE_TONEAREST);
ET eto = ec(CGAL::exact(l1));
return make_lazy<LK>(eto);
}
return Object();
}
template <typename L1, typename L2>
result_type
operator()(const L1& l1, const L2& l2) const
{
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
Protect_FPU_rounding<Protection> P;
try {
Lazy_object lo(new Lazy_rep_2<AC, EC, E2A, L1, L2>(ac, ec, l1, l2));
if(lo.approx().is_empty())
return Object();
#define CGAL_Kernel_obj(X) \
if (object_cast<typename AK::X>(& (lo.approx()))) { \
typedef Lazy_rep_1<Object_cast<typename AK::X>, Object_cast<typename EK::X>, E2A, Lazy_object> Lcr; \
Lcr * lcr = new Lcr(Object_cast<typename AK::X>(), Object_cast<typename EK::X>(), lo); \
return make_object(typename LK::X(lcr)); \
}
#include <CGAL/Kernel/interface_macros.h>
std::cerr << "object_cast inside Lazy_construction_rep::operator() failed. It needs more else if's (#1)" << std::endl;
std::cerr << "dynamic type of the Object : " << lo.approx().type().name() << std::endl;
} catch (Uncertain_conversion_exception) {
CGAL_BRANCH_PROFILER_BRANCH(tmp);
Protect_FPU_rounding<!Protection> P2(CGAL_FE_TONEAREST);
ET eto = ec(CGAL::exact(l1), CGAL::exact(l2));
return make_lazy<LK>(eto);
}
return Object();
}
};
//____________________________________________________________
// The magic functor that has Lazy<Something> as result type
template <typename LK, typename AC, typename EC, typename E2A_ = Default>
struct Lazy_construction
{
static const bool Protection = true;
typedef typename LK::Approximate_kernel AK;
typedef typename LK::Exact_kernel EK;
typedef typename EK::FT EFT;
typedef typename Default::Get<E2A_, typename LK::E2A>::type E2A;
typedef typename decay<typename AC::result_type>::type AT;
typedef typename decay<typename EC::result_type>::type ET;
typedef Lazy<AT, ET, EFT, E2A> Handle;
//typedef typename Type_mapper<AT,AK,LK>::type result_type;
typedef Handle result_type;
AC ac;
EC ec;
Lazy_construction(){}
Lazy_construction(LK const&k):ac(k.approximate_kernel()),ec(k.exact_kernel()){}
public:
result_type
operator()() const
{
return result_type( Handle(new Lazy_rep_0<AT,ET,E2A>()) );
}
template <typename L1>
result_type
operator()(const L1& l1) const
{
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
Protect_FPU_rounding<Protection> P;
try {
return result_type( Handle(new Lazy_rep_1<AC, EC, E2A, L1>(ac, ec, l1)) );
} catch (Uncertain_conversion_exception) {
CGAL_BRANCH_PROFILER_BRANCH(tmp);
Protect_FPU_rounding<!Protection> P2(CGAL_FE_TONEAREST);
return result_type( Handle(new Lazy_rep_0<AT,ET,E2A>(ec(CGAL::exact(l1)))) );
}
}
template <typename L1, typename L2>
result_type
operator()(const L1& l1, const L2& l2) const
{
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
Protect_FPU_rounding<Protection> P;
try {
return result_type( Handle(new Lazy_rep_2<AC, EC, E2A, L1, L2>(ac, ec, l1, l2)) );
} catch (Uncertain_conversion_exception) {
CGAL_BRANCH_PROFILER_BRANCH(tmp);
Protect_FPU_rounding<!Protection> P2(CGAL_FE_TONEAREST);
return result_type( Handle(new Lazy_rep_0<AT,ET,E2A>(ec(CGAL::exact(l1), CGAL::exact(l2)))) );
}
}
template <typename L1, typename L2, typename L3>
result_type
operator()(const L1& l1, const L2& l2, const L3& l3) const
{
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
Protect_FPU_rounding<Protection> P;
try {
return result_type( Handle(new Lazy_rep_3<AC, EC, E2A, L1, L2, L3>(ac, ec, l1, l2, l3)) );
} catch (Uncertain_conversion_exception) {
CGAL_BRANCH_PROFILER_BRANCH(tmp);
Protect_FPU_rounding<!Protection> P2(CGAL_FE_TONEAREST);
return result_type( Handle(new Lazy_rep_0<AT,ET,E2A>(ec(CGAL::exact(l1), CGAL::exact(l2), CGAL::exact(l3)))) );
}
}
template <typename L1, typename L2, typename L3, typename L4>
result_type
operator()(const L1& l1, const L2& l2, const L3& l3, const L4& l4) const
{
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
Protect_FPU_rounding<Protection> P;
try {
return result_type( Handle(new Lazy_rep_4<AC, EC, E2A, L1, L2, L3, L4>(ac, ec, l1, l2, l3, l4)) );
} catch (Uncertain_conversion_exception) {
CGAL_BRANCH_PROFILER_BRANCH(tmp);
Protect_FPU_rounding<!Protection> P2(CGAL_FE_TONEAREST);
return result_type( Handle(new Lazy_rep_0<AT,ET,E2A>(ec(CGAL::exact(l1), CGAL::exact(l2), CGAL::exact(l3), CGAL::exact(l4)))) );
}
}
template <typename L1, typename L2, typename L3, typename L4, typename L5>
result_type
operator()(const L1& l1, const L2& l2, const L3& l3, const L4& l4, const L5& l5) const
{
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
Protect_FPU_rounding<Protection> P;
try {
return result_type( Handle(new Lazy_rep_5<AC, EC, E2A, L1, L2, L3, L4, L5>(ac, ec, l1, l2, l3, l4, l5)) );
} catch (Uncertain_conversion_exception) {
CGAL_BRANCH_PROFILER_BRANCH(tmp);
Protect_FPU_rounding<!Protection> P2(CGAL_FE_TONEAREST);
return result_type( Handle(new Lazy_rep_0<AT,ET,E2A>(ec(CGAL::exact(l1), CGAL::exact(l2), CGAL::exact(l3), CGAL::exact(l4), CGAL::exact(l5)))) );
}
}
template <typename L1, typename L2, typename L3, typename L4, typename L5, typename L6>
result_type
operator()(const L1& l1, const L2& l2, const L3& l3, const L4& l4, const L5& l5, const L6& l6) const
{
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
Protect_FPU_rounding<Protection> P;
try {
return result_type( Handle(new Lazy_rep_6<AC, EC, E2A, L1, L2, L3, L4, L5, L6>(ac, ec, l1, l2, l3, l4, l5, l6)) );
} catch (Uncertain_conversion_exception) {
CGAL_BRANCH_PROFILER_BRANCH(tmp);
Protect_FPU_rounding<!Protection> P2(CGAL_FE_TONEAREST);
return result_type( Handle(new Lazy_rep_0<AT,ET,E2A>(ec(CGAL::exact(l1), CGAL::exact(l2), CGAL::exact(l3), CGAL::exact(l4), CGAL::exact(l5), CGAL::exact(l6)))) );
}
}
template <typename L1, typename L2, typename L3, typename L4, typename L5, typename L6, typename L7>
result_type
operator()(const L1& l1, const L2& l2, const L3& l3, const L4& l4, const L5& l5, const L6& l6, const L7& l7) const
{
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
Protect_FPU_rounding<Protection> P;
try {
return result_type( Handle(new Lazy_rep_7<AC, EC, E2A, L1, L2, L3, L4, L5, L6, L7>(ac, ec, l1, l2, l3, l4, l5, l6, l7)) );
} catch (Uncertain_conversion_exception) {
CGAL_BRANCH_PROFILER_BRANCH(tmp);
Protect_FPU_rounding<!Protection> P2(CGAL_FE_TONEAREST);
return result_type( Handle(new Lazy_rep_0<AT,ET,E2A>(ec(CGAL::exact(l1), CGAL::exact(l2), CGAL::exact(l3), CGAL::exact(l4), CGAL::exact(l5), CGAL::exact(l6), CGAL::exact(l7)))) );
}
}
template <typename L1, typename L2, typename L3, typename L4, typename L5, typename L6, typename L7, typename L8>
result_type
operator()(const L1& l1, const L2& l2, const L3& l3, const L4& l4, const L5& l5, const L6& l6, const L7& l7, const L8& l8) const
{
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
Protect_FPU_rounding<Protection> P;
try {
return result_type( Handle(new Lazy_rep_8<AC, EC, E2A, L1, L2, L3, L4, L5, L6, L7, L8>(ac, ec, l1, l2, l3, l4, l5, l6, l7, l8)) );
} catch (Uncertain_conversion_exception) {
CGAL_BRANCH_PROFILER_BRANCH(tmp);
Protect_FPU_rounding<!Protection> P2(CGAL_FE_TONEAREST);
return result_type( Handle(new Lazy_rep_0<AT,ET,E2A>(ec(CGAL::exact(l1), CGAL::exact(l2), CGAL::exact(l3), CGAL::exact(l4), CGAL::exact(l5), CGAL::exact(l6), CGAL::exact(l7), CGAL::exact(l8)))) );
}
}
};
} //namespace CGAL
#endif // CGAL_LAZY_H