mirror of https://github.com/CGAL/cgal
47 lines
1.4 KiB
TeX
47 lines
1.4 KiB
TeX
\begin{ccRefConcept}{PolynomialTraits_d::PseudoDivisionQuotient}
|
|
|
|
\ccDefinition
|
|
|
|
This \ccc{AdaptableBinaryFunction} computes the quotient of the
|
|
{\em pseudo division} of two polynomials $f$ and $g$.
|
|
|
|
Given $f$ and $g \neq 0$ one can compute quotient $q$ and remainder $r$
|
|
such that $D \cdot f = g \cdot q + r$ and $degree(r) < degree(g)$,
|
|
where $ D = leading\_coefficient(g)^{max(0, degree(f)-degree(g)+1)}$
|
|
|
|
This functor computes $q$.
|
|
|
|
\ccRefines
|
|
\ccc{AdaptableBinaryFunction} \\
|
|
\ccc{CopyConstructible}\\
|
|
\ccc{DefaultConstructible}\\
|
|
|
|
\ccCreationVariable{fo}
|
|
|
|
\ccTypes
|
|
|
|
|
|
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
|
|
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue
|
|
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue
|
|
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d second_argument_type;}{}
|
|
|
|
\ccOperations
|
|
|
|
\ccMethod{result_type operator()(first_argument_type f,
|
|
second_argument_type g);}{
|
|
Returns the quotient $q$ of the pseudo division of $f$ and $g$ with
|
|
respect to the outermost variable $x_{d-1}$.}
|
|
|
|
|
|
%\ccHasModels
|
|
|
|
\ccSeeAlso
|
|
|
|
\ccRefIdfierPage{Polynomial_d}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d::PseudoDivision}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d::PseudoDivisionRemainder}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d::PseudoDivisionQuotient}\\
|
|
|
|
\end{ccRefConcept} |