mirror of https://github.com/CGAL/cgal
265 lines
5.7 KiB
C++
265 lines
5.7 KiB
C++
// Copyright (c) 2000 Utrecht University (The Netherlands),
|
|
// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),
|
|
// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg
|
|
// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),
|
|
// and Tel-Aviv University (Israel). All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public License as
|
|
// published by the Free Software Foundation; version 2.1 of the License.
|
|
// See the file LICENSE.LGPL distributed with CGAL.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
//
|
|
//
|
|
// Author : Andreas Fabri
|
|
|
|
#ifndef CGAL_CARTESIAN_VECTOR_3_H
|
|
#define CGAL_CARTESIAN_VECTOR_3_H
|
|
|
|
#include <CGAL/Origin.h>
|
|
#include <CGAL/array.h>
|
|
#include <CGAL/constant.h>
|
|
|
|
namespace CGAL {
|
|
|
|
template < class R_ >
|
|
class VectorC3
|
|
{
|
|
typedef typename R_::FT FT;
|
|
typedef typename R_::Point_3 Point_3;
|
|
typedef typename R_::Vector_3 Vector_3;
|
|
typedef typename R_::Ray_3 Ray_3;
|
|
typedef typename R_::Segment_3 Segment_3;
|
|
typedef typename R_::Line_3 Line_3;
|
|
typedef typename R_::Direction_3 Direction_3;
|
|
|
|
typedef cpp0x::array<FT, 3> Rep;
|
|
typedef typename R_::template Handle<Rep>::type Base;
|
|
|
|
Base base;
|
|
|
|
public:
|
|
|
|
typedef typename Rep::const_iterator Cartesian_const_iterator;
|
|
|
|
typedef R_ R;
|
|
|
|
VectorC3() {}
|
|
|
|
VectorC3(const Null_vector &n)
|
|
{ *this = R().construct_vector_3_object()(n); }
|
|
|
|
VectorC3(const Point_3 &a, const Point_3 &b)
|
|
{ *this = R().construct_vector_3_object()(a, b); }
|
|
|
|
explicit VectorC3(const Segment_3 &s)
|
|
{ *this = R().construct_vector_3_object()(s); }
|
|
|
|
explicit VectorC3(const Ray_3 &r)
|
|
{ *this = R().construct_vector_3_object()(r); }
|
|
|
|
explicit VectorC3(const Line_3 &l)
|
|
{ *this = R().construct_vector_3_object()(l); }
|
|
|
|
VectorC3(const FT &x, const FT &y, const FT &z)
|
|
: base(CGAL::make_array(x, y, z)) {}
|
|
|
|
VectorC3(const FT &x, const FT &y, const FT &z, const FT &w)
|
|
: base( w != FT(1) ? CGAL::make_array(x/w, y/w, z/w)
|
|
: CGAL::make_array(x, y, z) ) {}
|
|
|
|
const FT & x() const
|
|
{
|
|
return get(base)[0];
|
|
}
|
|
const FT & y() const
|
|
{
|
|
return get(base)[1];
|
|
}
|
|
const FT & z() const
|
|
{
|
|
return get(base)[2];
|
|
}
|
|
|
|
const FT & hx() const
|
|
{
|
|
return x();
|
|
}
|
|
const FT & hy() const
|
|
{
|
|
return y();
|
|
}
|
|
const FT & hz() const
|
|
{
|
|
return z();
|
|
}
|
|
const FT & hw() const
|
|
{
|
|
return constant<FT, 1>();
|
|
}
|
|
|
|
Cartesian_const_iterator cartesian_begin() const
|
|
{
|
|
return get(base).begin();
|
|
}
|
|
|
|
Cartesian_const_iterator cartesian_end() const
|
|
{
|
|
return get(base).end();
|
|
}
|
|
|
|
const FT & cartesian(int i) const;
|
|
const FT & operator[](int i) const;
|
|
const FT & homogeneous(int i) const;
|
|
|
|
int dimension() const
|
|
{
|
|
return 3;
|
|
}
|
|
|
|
Vector_3 operator+(const VectorC3 &w) const;
|
|
Vector_3 operator-(const VectorC3 &w) const;
|
|
Vector_3 operator-() const;
|
|
Vector_3 operator/(const FT &c) const;
|
|
FT squared_length() const;
|
|
Direction_3 direction() const;
|
|
};
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
operator==(const VectorC3<R> &v, const VectorC3<R> &w)
|
|
{
|
|
return w.x() == v.x() && w.y() == v.y() && w.z() == v.z();
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
operator!=(const VectorC3<R> &v, const VectorC3<R> &w)
|
|
{
|
|
return !(v == w);
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
operator==(const VectorC3<R> &v, const Null_vector &)
|
|
{
|
|
return CGAL_NTS is_zero(v.x()) && CGAL_NTS is_zero(v.y()) &&
|
|
CGAL_NTS is_zero(v.z());
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
operator==(const Null_vector &n, const VectorC3<R> &v)
|
|
{
|
|
return v == n;
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
operator!=(const VectorC3<R> &v, const Null_vector &n)
|
|
{
|
|
return !(v == n);
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
operator!=(const Null_vector &n, const VectorC3<R> &v)
|
|
{
|
|
return !(v == n);
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
const typename VectorC3<R>::FT &
|
|
VectorC3<R>::cartesian(int i) const
|
|
{
|
|
CGAL_kernel_precondition( (i>=0) & (i<3) );
|
|
if (i==0) return x();
|
|
if (i==1) return y();
|
|
return z();
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
const typename VectorC3<R>::FT &
|
|
VectorC3<R>::operator[](int i) const
|
|
{
|
|
return cartesian(i);
|
|
}
|
|
|
|
template < class R >
|
|
const typename VectorC3<R>::FT &
|
|
VectorC3<R>::homogeneous(int i) const
|
|
{
|
|
if (i==3) return hw();
|
|
return cartesian(i);
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
typename VectorC3<R>::Vector_3
|
|
VectorC3<R>::
|
|
operator+(const VectorC3<R> &w) const
|
|
{
|
|
return VectorC3<R>(x() + w.x(), y() + w.y(), z() + w.z());
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
typename VectorC3<R>::Vector_3
|
|
VectorC3<R>::operator-(const VectorC3<R> &w) const
|
|
{
|
|
return VectorC3<R>(x() - w.x(), y() - w.y(), z() - w.z());
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
typename VectorC3<R>::Vector_3
|
|
VectorC3<R>::operator-() const
|
|
{
|
|
return R().construct_opposite_vector_3_object()(*this);
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
typename VectorC3<R>::FT
|
|
VectorC3<R>::squared_length() const
|
|
{
|
|
return CGAL_NTS square(x()) + CGAL_NTS square(y()) + CGAL_NTS square(z());
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
typename VectorC3<R>::Vector_3
|
|
VectorC3<R>::
|
|
operator/(const typename VectorC3<R>::FT &c) const
|
|
{
|
|
return VectorC3<R>(x()/c, y()/c, z()/c);
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
typename VectorC3<R>::Direction_3
|
|
VectorC3<R>::direction() const
|
|
{
|
|
return Direction_3(*this);
|
|
}
|
|
|
|
} //namespace CGAL
|
|
|
|
#endif // CGAL_CARTESIAN_VECTOR_3_H
|