cgal/Lab/demo/Lab/Scene_polyhedron_selection_...

1197 lines
39 KiB
C++

#ifndef SCENE_POLYHEDRON_SELECTION_ITEM_H
#define SCENE_POLYHEDRON_SELECTION_ITEM_H
#include "Scene_polyhedron_selection_item_config.h"
#include "Plugins/PMP/Scene_facegraph_item_k_ring_selection.h"
#include "Travel_isolated_components.h"
#include "Scene_surface_mesh_item.h"
#include "Scene_polyhedron_item_decorator.h"
#include <CGAL/property_map.h>
#include <CGAL/Polygon_mesh_processing/orient_polygon_soup.h>
#include <CGAL/Polygon_mesh_processing/polygon_soup_to_polygon_mesh.h>
#include <CGAL/Polygon_mesh_processing/connected_components.h>
#include <CGAL/Three/Scene_print_item_interface.h>
#include "CGAL_Lab_detect_sharp_edges.h"
// Laurent Rineau, 2016/04/07: that header should not be included here, but
// only in the .cpp file. But that header file does contain the body of a
// few member functions.
#include <CGAL/Three/Viewer_interface.h>
#include <fstream>
#include <unordered_set>
#include <boost/property_map/vector_property_map.hpp>
#include <CGAL/boost/graph/selection.h>
#include <CGAL/boost/graph/Euler_operations.h>
#include <CGAL/Qt/manipulatedFrame.h>
namespace PMP = CGAL::Polygon_mesh_processing;
typedef Scene_surface_mesh_item Scene_face_graph_item;
typedef Scene_face_graph_item::Face_graph Face_graph;
typedef boost::property_map<Face_graph,CGAL::vertex_point_t>::type VPmap;
typedef boost::property_map<Face_graph,CGAL::vertex_point_t>::const_type constVPmap;
typedef Scene_face_graph_item::Vertex_selection_map Vertex_selection_map;
typedef Scene_face_graph_item::Face_selection_map Face_selection_map;
typedef boost::graph_traits<Face_graph>::vertex_descriptor fg_vertex_descriptor;
typedef boost::graph_traits<Face_graph>::halfedge_descriptor fg_halfedge_descriptor;
typedef boost::graph_traits<Face_graph>::edge_descriptor fg_edge_descriptor;
typedef boost::graph_traits<Face_graph>::face_descriptor fg_face_descriptor;
typedef boost::graph_traits<Face_graph>::vertex_iterator vertex_iterator;
typedef boost::graph_traits<Face_graph>::halfedge_iterator halfedge_iterator;
typedef boost::graph_traits<Face_graph>::edge_iterator edge_iterator;
typedef boost::graph_traits<Face_graph>::face_iterator face_iterator;
template<class HandleType, class SelectionItem>
struct Selection_traits {};
template<class SelectionItem>
struct Selection_traits<typename SelectionItem::fg_vertex_descriptor, SelectionItem>
{
typedef typename SelectionItem::Selection_set_vertex Container;
typedef vertex_iterator Iterator;
Selection_traits(SelectionItem* item) : item(item) { }
Container& container() { return item->selected_vertices; }
Iterator iterator_begin() { return vertices(*item->polyhedron()).first; }
Iterator iterator_end() { return vertices(*item->polyhedron()).second; }
std::size_t size() { return num_vertices(*item->polyhedron()); }
std::size_t id(typename SelectionItem::fg_vertex_descriptor vh)
{
return get(get(boost::vertex_index, *item->polyhedron()), vh);
}
template <class VertexRange, class HalfedgeGraph, class IsVertexSelectedPMap, class OutputIterator>
static
OutputIterator
reduce_selection(
const VertexRange& selection,
HalfedgeGraph& graph,
unsigned int k,
IsVertexSelectedPMap is_selected,
OutputIterator out)
{
return reduce_vertex_selection(selection, graph, k, is_selected, out);
}
template <class VertexRange, class HalfedgeGraph, class IsVertexSelectedPMap, class OutputIterator>
static
OutputIterator
expand_selection(
const VertexRange& selection,
HalfedgeGraph& graph,
unsigned int k,
IsVertexSelectedPMap is_selected,
OutputIterator out)
{
return expand_vertex_selection(selection, graph, k, is_selected, out);
}
SelectionItem* item;
};
template<class SelectionItem>
struct Selection_traits<typename SelectionItem::fg_face_descriptor, SelectionItem>
{
typedef typename SelectionItem::Selection_set_facet Container;
typedef face_iterator Iterator;
Selection_traits(SelectionItem* item) : item(item) { }
Container& container() { return item->selected_facets; }
Iterator iterator_begin() { return faces(*item->polyhedron()).first; }
Iterator iterator_end() { return faces(*item->polyhedron()).second; }
std::size_t size() { return num_faces(*item->polyhedron()); }
std::size_t id(typename SelectionItem::fg_face_descriptor fh)
{
return get(get(boost::face_index, *item->polyhedron()), fh);
}
template <class FaceRange, class HalfedgeGraph, class IsFaceSelectedPMap, class OutputIterator>
static
OutputIterator
reduce_selection(
const FaceRange& selection,
HalfedgeGraph& graph,
unsigned int k,
IsFaceSelectedPMap is_selected,
OutputIterator out)
{
return reduce_face_selection(selection, graph, k, is_selected, out);
}
template <class FaceRange, class HalfedgeGraph, class IsFaceSelectedPMap, class OutputIterator>
static
OutputIterator
expand_selection(
const FaceRange& selection,
HalfedgeGraph& graph,
unsigned int k,
IsFaceSelectedPMap is_selected,
OutputIterator out)
{
return expand_face_selection(selection, graph, k, is_selected, out);
}
SelectionItem* item;
};
template<class SelectionItem>
struct Selection_traits<typename SelectionItem::fg_edge_descriptor, SelectionItem>
{
typedef typename SelectionItem::Selection_set_edge Container;
typedef edge_iterator Iterator;
Selection_traits(SelectionItem* item) : item(item) { }
Container& container() { return item->selected_edges; }
Iterator iterator_begin() { return edges(*item->polyhedron()).first; }
Iterator iterator_end() { return edges(*item->polyhedron()).second; }
std::size_t size() { return num_edges(*item->polyhedron()); }
std::size_t id(boost::graph_traits<Face_graph>::edge_descriptor ed)
{
return get(boost::halfedge_index, *item->polyhedron(), halfedge(ed,*item->polyhedron()))/2;
}
template <class EdgeRange, class HalfedgeGraph, class IsEdgeSelectedPMap, class OutputIterator>
static
OutputIterator
reduce_selection(
const EdgeRange& selection,
HalfedgeGraph& graph,
unsigned int k,
IsEdgeSelectedPMap is_selected,
OutputIterator out)
{
return reduce_edge_selection(selection, graph, k, is_selected, out);
}
template <class EdgeRange, class HalfedgeGraph, class IsEdgeSelectedPMap, class OutputIterator>
static
OutputIterator
expand_selection(
const EdgeRange& selection,
HalfedgeGraph& graph,
unsigned int k,
IsEdgeSelectedPMap is_selected,
OutputIterator out)
{
return expand_edge_selection(selection, graph, k, is_selected, out);
}
SelectionItem* item;
};
//////////////////////////////////////////////////////////////////////////
struct Scene_polyhedron_selection_item_priv;
class SCENE_POLYHEDRON_SELECTION_ITEM_EXPORT Scene_polyhedron_selection_item
: public Scene_polyhedron_item_decorator,
public CGAL::Three::Scene_print_item_interface
{
Q_OBJECT
Q_INTERFACES(CGAL::Three::Scene_print_item_interface)
Q_PLUGIN_METADATA(IID "com.geometryfactory.CGALLab.PrintInterface/1.0")
friend class CGAL_Lab_selection_plugin;
public:
typedef boost::graph_traits<Face_graph>::face_descriptor fg_face_descriptor;
typedef boost::graph_traits<Face_graph>::edge_descriptor fg_edge_descriptor;
typedef boost::graph_traits<Face_graph>::halfedge_descriptor fg_halfedge_descriptor;
typedef boost::graph_traits<Face_graph>::vertex_descriptor fg_vertex_descriptor;
typedef Scene_facegraph_item_k_ring_selection::Active_handle Active_handle;
enum SelectionType{
Vertex=0x1,
Edge=0x2,
Facet=0x4,
None=0x8
};
Q_DECLARE_FLAGS(SelectionTypes, SelectionType)
void common_constructor();
Scene_polyhedron_selection_item() ;
Scene_polyhedron_selection_item(Scene_face_graph_item* poly_item, QMainWindow* mw);
~Scene_polyhedron_selection_item();
void inverse_selection();
void setPathSelection(bool b);
//For ID printing
void printPrimitiveId(QPoint, CGAL::Three::Viewer_interface*);
bool printVertexIds() const;
bool printEdgeIds() const;
bool printFaceIds() const;
void printAllIds();
bool testDisplayId(double, double, double, CGAL::Three::Viewer_interface*)const;
bool shouldDisplayIds(CGAL::Three::Scene_item *current_item) const;
QString defaultSaveName() const
{
QString res = name();
res.remove(" (selection)");
return res;
}
void initializeBuffers(CGAL::Three::Viewer_interface *) const;
void computeElements() const;
void setKeepSelectionValid(SelectionTypes type);
protected:
void init(Scene_face_graph_item* poly_item, QMainWindow* mw);
Active_handle::Type get_active_handle_type()
{ return k_ring_selector.active_handle_type; }
void set_active_handle_type(Active_handle::Type aht)
{ k_ring_selector.active_handle_type = aht; }
void set_lasso_mode(bool b)
{ k_ring_selector.set_lasso_mode(b); }
int get_k_ring() { return k_ring_selector.k_ring; }
void set_k_ring(int k) { k_ring_selector.k_ring = k; }
bool get_is_insert() { return is_insert; }
void set_is_insert(bool i) { is_insert = i; }
public:
typedef std::unordered_set<fg_vertex_descriptor> Selection_set_vertex;
typedef std::unordered_set<fg_face_descriptor> Selection_set_facet;
typedef std::unordered_set<fg_edge_descriptor> Selection_set_edge;
Vertex_selection_map vertex_selection_map()
{
return this->poly_item->vertex_selection_map();
}
Face_graph* polyhedron()
{
return this->poly_item->polyhedron();
}
const Face_graph* polyhedron() const
{
return this->poly_item->polyhedron();
}
using Scene_polyhedron_item_decorator::draw;
virtual void draw(CGAL::Three::Viewer_interface*) const;
virtual void drawEdges() const { }
virtual void drawEdges(CGAL::Three::Viewer_interface*) const;
virtual void drawPoints(CGAL::Three::Viewer_interface*) const;
bool supportsRenderingMode(RenderingMode m) const { return (m==Flat); }
bool isEmpty() const {
return selected_vertices.empty() && selected_edges.empty() && selected_facets.empty();
}
void reset_numbers();
void compute_bbox() const
{
// Workaround a bug in g++-4.8.3:
// https://stackoverflow.com/a/21755207/1728537
// Using std::make_optional to copy-initialize 'item_bbox' hides the
// warning about '*item_bbox' not being initialized.
// -- Laurent Rineau, 2014/10/30
constVPmap vpm = get(CGAL::vertex_point, *polyhedron());
std::optional<CGAL::Bbox_3> item_bbox;
for(Selection_set_vertex::const_iterator v_it = selected_vertices.begin();
v_it != selected_vertices.end(); ++v_it) {
if(item_bbox) { *item_bbox = *item_bbox + get(vpm,*v_it).bbox(); }
else { item_bbox = get(vpm,*v_it).bbox(); }
}
for(Selection_set_edge::const_iterator e_it = selected_edges.begin();
e_it != selected_edges.end(); ++e_it) {
CGAL::Bbox_3 e_bbox = get(vpm,target(halfedge(*e_it,*polyhedron()),*polyhedron())).bbox();
e_bbox = e_bbox + get(vpm,target(opposite(halfedge(*e_it,*polyhedron()),*polyhedron()),*polyhedron())).bbox();
if(item_bbox) { *item_bbox = *item_bbox + e_bbox; }
else { item_bbox = e_bbox; }
}
for(Selection_set_facet::const_iterator f_it = selected_facets.begin();
f_it != selected_facets.end(); ++f_it) {
fg_face_descriptor fd = *f_it;
for(fg_halfedge_descriptor he : halfedges_around_face(halfedge(fd,*polyhedron()),*polyhedron())){
if(item_bbox) { *item_bbox = *item_bbox + get(vpm,target(he,*polyhedron())).bbox(); }
else { item_bbox = get(vpm,target(he,*polyhedron())).bbox(); }
}
}
if(!item_bbox)
{
setBbox(this->poly_item->bbox());
return;
}
setBbox(Bbox(item_bbox->xmin(),item_bbox->ymin(),item_bbox->zmin(),
item_bbox->xmax(),item_bbox->ymax(),item_bbox->zmax()));
}
bool save(const std::string& file_name) const {
// update id fields before using
if(selected_vertices.size() > 0
||selected_facets.size() > 0
|| (selected_edges.size() > 0 &&
selected_vertices.empty() )) { poly_item->face_graph()->collect_garbage(); }
std::ofstream out(file_name.c_str());
if(!out) { return false; }
for(Selection_set_vertex::const_iterator it = selected_vertices.begin(); it != selected_vertices.end(); ++it)
{ out << get(boost::vertex_index, *polyhedron(), *it) << " "; }
out << "\n";
for(Selection_set_facet::const_iterator it = selected_facets.begin(); it != selected_facets.end(); ++it)
{ out << get(boost::face_index, *polyhedron(), *it) << " "; }
out << "\n";
for(Selection_set_edge::const_iterator it = selected_edges.begin(); it != selected_edges.end(); ++it)
{
fg_edge_descriptor ed = *it;
out << get(boost::vertex_index, *polyhedron(), source(ed,*polyhedron())) << " "
<< get(boost::vertex_index, *polyhedron(),target(ed,*polyhedron())) << " ";
}
out << "\n";
return true;
}
bool load(const std::string& file_name) {
file_name_holder = file_name;
return true;
}
// this function is called by selection_plugin, since at the time of the call of load(...)
// we do not have access to selected polyhedron item
bool actual_load(Scene_face_graph_item* poly_item, QMainWindow* mw)
{
init(poly_item, mw);
std::vector<fg_vertex_descriptor> all_vertices;
all_vertices.reserve(num_vertices(*polyhedron()));
for(fg_vertex_descriptor vb : vertices(*polyhedron()))
{ all_vertices.push_back(vb); }
std::vector<fg_face_descriptor> all_facets;
all_facets.reserve(num_faces(*polyhedron()));
for(fg_face_descriptor fb : faces(*polyhedron()))
{ all_facets.push_back(fb); }
std::vector<fg_edge_descriptor> all_edges(edges(*polyhedron()).first, edges(*polyhedron()).second);
std::ifstream in(file_name_holder.c_str());
if(!in) { return false; }
std::string line;
std::size_t id, id2;
if(!std::getline(in, line)) { compute_normal_maps(); return true; }
std::istringstream vertex_line(line);
while(vertex_line >> id) {
if(id >= all_vertices.size()) { return false; }
selected_vertices.insert(all_vertices[id]);
}
if(!std::getline(in, line)) { compute_normal_maps(); return true; }
std::istringstream facet_line(line);
while(facet_line >> id) {
if(id >= all_facets.size()) { return false; }
selected_facets.insert(all_facets[id]);
}
if(!std::getline(in, line)) { compute_normal_maps(); return true; }
std::istringstream edge_line(line);
while(edge_line >> id >> id2) {
if(id >= all_edges.size() || id2 >= all_edges.size()) { return false; }
fg_vertex_descriptor s = all_vertices[id];
fg_vertex_descriptor t = all_vertices[id2];
fg_halfedge_descriptor hd;
bool exists;
boost::tie(hd,exists) = halfedge(s,t,*polyhedron());
if(! exists) { return false; }
selected_edges.insert(edge(hd,*polyhedron()));
}
compute_normal_maps();
return true;
}
//adds the content of temp_selection to the current selection
void add_to_selection();
// select all of `active_handle_type`(vertex, facet or edge)
void select_all() {
switch(get_active_handle_type()) {
case Active_handle::VERTEX:
select_all<fg_vertex_descriptor>(); break;
case Active_handle::FACET:
case Active_handle::CONNECTED_COMPONENT:
select_all<fg_face_descriptor>(); break;
case Active_handle::EDGE:
case Active_handle::PATH:
selected_edges.insert(edges(*polyhedron()).first, edges(*polyhedron()).second);
invalidateOpenGLBuffers();
CGAL::QGLViewer* v = *CGAL::QGLViewer::QGLViewerPool().begin();
v->update();
break;
}
}
void select_boundary();
void select_all_NT();
// select all of vertex, facet or edge (use fg_vertex_descriptor, fg_face_descriptor, fg_edge_descriptor as template argument)
template<class HandleType>
void select_all() {
typedef Selection_traits<HandleType, Scene_polyhedron_selection_item> Tr;
Tr tr(this);
for(typename Tr::Iterator it = tr.iterator_begin() ; it != tr.iterator_end(); ++it) {
tr.container().insert(*it);
}
invalidateOpenGLBuffers();
Q_EMIT itemChanged();
}
// clear all of `active_handle_type`(vertex, facet or edge)
void clear() {
switch(get_active_handle_type()) {
case Active_handle::VERTEX:
clear<fg_vertex_descriptor>(); break;
case Active_handle::FACET:
case Active_handle::CONNECTED_COMPONENT:
clear<fg_face_descriptor>(); break;
case Active_handle::EDGE:
case Active_handle::PATH:
clear<fg_edge_descriptor>(); break;
}
}
// select all of vertex, facet or edge (use fg_vertex_descriptor, fg_face_descriptor, fg_edge_descriptor as template argument)
template<class HandleType>
void clear() {
Selection_traits<HandleType, Scene_polyhedron_selection_item> tr(this);
tr.container().clear();
invalidateOpenGLBuffers();
Q_EMIT itemChanged();
}
void clear_all(){
clear<fg_vertex_descriptor>();
clear<fg_face_descriptor>();
clear<fg_edge_descriptor>();
}
std::optional<std::size_t> get_minimum_isolated_component() {
switch(get_active_handle_type()) {
case Active_handle::VERTEX:
return get_minimum_isolated_component<fg_vertex_descriptor>();
case Active_handle::FACET:
return get_minimum_isolated_component<fg_face_descriptor>();
default:
return get_minimum_isolated_component<fg_edge_descriptor>();
}
}
template<class HandleType> // use fg_vertex_descriptor, fg_face_descriptor, fg_edge_descriptor
std::optional<std::size_t> get_minimum_isolated_component() {
Selection_traits<HandleType, Scene_polyhedron_selection_item> tr(this);
Travel_isolated_components<Face_graph>::Minimum_visitor visitor;
Travel_isolated_components<Face_graph>(*polyhedron()).travel<HandleType>
(tr.iterator_begin(), tr.iterator_end(), tr.size(), visitor);
return visitor.minimum;
}
std::optional<std::size_t> select_isolated_components(std::size_t threshold) {
switch(get_active_handle_type()) {
case Active_handle::VERTEX:
return select_isolated_components<fg_vertex_descriptor>(threshold);
case Active_handle::FACET:
return select_isolated_components<fg_face_descriptor>(threshold);
default:
return select_isolated_components<fg_edge_descriptor>(threshold);
}
}
template<class HandleType> // use fg_vertex_descriptor, fg_face_descriptor, fg_edge_descriptor
std::optional<std::size_t> select_isolated_components(std::size_t threshold)
{
typedef Selection_traits<HandleType, Scene_polyhedron_selection_item> Tr;
Tr tr(this);
typedef std::insert_iterator<typename Tr::Container> Output_iterator;
Output_iterator out(tr.container(), tr.container().begin());
Travel_isolated_components<Face_graph>::Selection_visitor<Output_iterator> visitor(threshold , out);
Travel_isolated_components<Face_graph>(*polyhedron()).travel<HandleType>
(tr.iterator_begin(), tr.iterator_end(), tr.size(), visitor);
if(visitor.any_inserted) { invalidateOpenGLBuffers(); Q_EMIT itemChanged(); }
return visitor.minimum_visitor.minimum;
}
void expand_or_reduce(int steps) {
if (steps>0)
{
switch(get_active_handle_type()) {
case Active_handle::VERTEX:
expand_selection<fg_vertex_descriptor, boost::vertex_index_t>(steps);
break;
case Active_handle::FACET:
case Active_handle::CONNECTED_COMPONENT:
expand_selection<fg_face_descriptor, boost::face_index_t>(steps);
break;
case Active_handle::EDGE:
expand_selection<fg_edge_descriptor, boost::edge_index_t>(steps);
break;
case Active_handle::PATH:
break;
}
}
else
{
switch(get_active_handle_type()) {
case Active_handle::VERTEX:
reduce_selection<fg_vertex_descriptor, boost::vertex_index_t>(-steps);
break;
case Active_handle::FACET:
case Active_handle::CONNECTED_COMPONENT:
reduce_selection<fg_face_descriptor, boost::face_index_t>(-steps);
break;
case Active_handle::EDGE:
reduce_selection<fg_edge_descriptor, boost::edge_index_t>(-steps);
break;
case Active_handle::PATH:
break;
}
}
}
template <class Handle, class IDmap>
struct Is_selected_property_map{
std::vector<bool>* is_selected_ptr;
IDmap idmap;
Is_selected_property_map()
: is_selected_ptr(nullptr) {}
Is_selected_property_map(std::vector<bool>& is_selected, IDmap idmap)
: is_selected_ptr( &is_selected), idmap(idmap) {}
template<class H>
std::size_t id(H h){ return get(idmap,h); }
friend bool get(Is_selected_property_map map, Handle h)
{
CGAL_assertion(map.is_selected_ptr!=nullptr);
return (*map.is_selected_ptr)[map.id(h)];
}
friend void put(Is_selected_property_map map, Handle h, bool b)
{
CGAL_assertion(map.is_selected_ptr!=nullptr);
(*map.is_selected_ptr)[map.id(h)]=b;
}
};
template <typename SelectionSet>
struct Is_constrained_map
{
SelectionSet* m_set_ptr;
typedef typename SelectionSet::key_type key_type;
typedef bool value_type;
typedef bool reference;
typedef boost::read_write_property_map_tag category;
Is_constrained_map()
: m_set_ptr(NULL)
{}
Is_constrained_map(SelectionSet* set_)
: m_set_ptr(set_)
{}
friend value_type get(const Is_constrained_map& map, const key_type& k)
{
CGAL_assertion(map.m_set_ptr != nullptr);
return map.m_set_ptr->count(k);
}
friend void put(Is_constrained_map& map, const key_type& k, const value_type b)
{
CGAL_assertion(map.m_set_ptr != NULL);
if (b) map.m_set_ptr->insert(k);
else map.m_set_ptr->erase(k);
}
};
template <class Handle>
struct Index_map
{
typedef Handle key_type;
typedef std::size_t value_type;
typedef value_type reference;
typedef boost::read_write_property_map_tag category;
friend value_type get(Index_map, Handle h)
{
return h->id();
}
friend void put(Index_map, Handle h, value_type i)
{
h->id() = i;
}
};
template <class Handle, class Tag>
void expand_selection(unsigned int steps)
{
typedef Selection_traits<Handle, Scene_polyhedron_selection_item> Tr;
Tr tr(this);
std::vector<bool> mark(tr.size(),false);
for(Handle h :tr.container())
{
std::size_t id = tr.id(h);
mark[id]=true;
}
typedef typename boost::property_map<Face_graph,Tag>::type PM;
Tr::expand_selection(
tr.container(),
*this->poly_item->polyhedron(),
steps,
Is_selected_property_map<Handle,PM>(mark, get(Tag(),*this->poly_item->polyhedron())),
CGAL::Emptyset_iterator()
);
bool any_change = false;
for(typename Tr::Iterator it = tr.iterator_begin() ; it != tr.iterator_end(); ++it) {
if(mark[tr.id(*it)]) {
any_change |= tr.container().insert(*it).second;
}
}
if(any_change) { invalidateOpenGLBuffers(); Q_EMIT itemChanged(); }
}
template <class Handle, class Tag>
void reduce_selection(unsigned int steps) {
typedef Selection_traits<Handle, Scene_polyhedron_selection_item> Tr;
Tr tr(this);
std::vector<bool> mark(tr.size(),false);
for(Handle h :tr.container())
mark[tr.id(h)]=true;
typedef typename boost::property_map<Face_graph,Tag>::type PM;
Tr::reduce_selection(
tr.container(),
*this->poly_item->polyhedron(),
steps,
Is_selected_property_map<Handle,PM>(mark, get(Tag(),*this->poly_item->polyhedron())),
CGAL::Emptyset_iterator()
);
bool any_change = false;
for(typename Tr::Iterator it = tr.iterator_begin() ; it != tr.iterator_end(); ++it) {
if(!mark[tr.id(*it)]) {
any_change |= (tr.container().erase(*it)!=0);
}
}
if(any_change) { invalidateOpenGLBuffers(); Q_EMIT itemChanged(); }
}
void erase_selected_facets() {
if(selected_facets.empty()) {return;}
// no-longer-valid vertices and edges will be handled when item_about_to_be_changed()
for (Selection_set_edge::iterator eit = selected_edges.begin(); eit != selected_edges.end();)
{
if(//both incident faces will be erased
(selected_facets.find(face(halfedge(*eit,*polyhedron()),*polyhedron())) != selected_facets.end()
&& selected_facets.find(face(opposite(halfedge(*eit,*polyhedron()),*polyhedron()),*polyhedron())) != selected_facets.end())
//OR eit is a boundary edge and its incident face will be erased
|| (is_border(halfedge(*eit,*polyhedron()),*polyhedron())
&& (selected_facets.find(face(halfedge(*eit,*polyhedron()),*polyhedron())) != selected_facets.end()
|| selected_facets.find(face(opposite(halfedge(*eit,*polyhedron()),*polyhedron()),*polyhedron())) != selected_facets.end())))
{
fg_edge_descriptor tmp = *eit;
++eit;
selected_edges.erase(tmp);
}
else
++eit;
}
// erase facets from poly
for(Selection_set_facet::iterator fb = selected_facets.begin(); fb != selected_facets.end(); ++fb) {
CGAL::Euler::remove_face(halfedge(*fb,*polyhedron()), *polyhedron());
}
selected_facets.clear();
invalidateOpenGLBuffers();
changed_with_poly_item();
}
// This function writes into the id() of a Polyhedron
void keep_connected_components() {
if (selected_facets.empty()) { return; }
Selection_traits<fg_face_descriptor, Scene_polyhedron_selection_item> trf(this);
Selection_traits<fg_vertex_descriptor, Scene_polyhedron_selection_item> trv(this);
PMP::keep_connected_components(*polyhedron(), trf.container());
changed_with_poly_item();
}
bool export_selected_facets_as_polyhedron(Face_graph* out) {
// Note: might be a more performance wise solution
// assign sequential id to vertices neighbor to selected facets
for(Selection_set_facet::iterator fb = selected_facets.begin(); fb != selected_facets.end(); ++fb) {
for(fg_halfedge_descriptor hb : halfedges_around_face(halfedge(*fb,*polyhedron()),*polyhedron())){
put(vertex_selection_map(),target(hb,*polyhedron()), 0);
}
}
// construct point vector
std::vector<EPICK::Point_3> points;
points.reserve(selected_facets.size());
VPmap vpm = get(CGAL::vertex_point, *polyhedron());
unsigned int counter = 1;
for(Selection_set_facet::iterator fb = selected_facets.begin(); fb != selected_facets.end(); ++fb) {
for(fg_halfedge_descriptor hb : halfedges_around_face(halfedge(*fb,*polyhedron()),*polyhedron())){
if(get(vertex_selection_map(), target(hb,*polyhedron())) == 0) {
put(vertex_selection_map(),target(hb,*polyhedron()), counter++);
points.push_back(get(vpm,target(hb,*polyhedron())));
}
}
}
// construct polygon vector
std::vector<std::vector<std::size_t> > polygons(selected_facets.size());
counter = 0;
for(Selection_set_facet::iterator fb = selected_facets.begin(); fb != selected_facets.end(); ++fb, ++counter) {
for(fg_halfedge_descriptor hb : halfedges_around_face(halfedge(*fb,*polyhedron()),*polyhedron()))
{
polygons[counter].push_back(get(vertex_selection_map(),target(hb,*polyhedron())) -1);
}
}
CGAL::Polygon_mesh_processing::polygon_soup_to_polygon_mesh<Face_graph>(
points, polygons, *out);
return num_vertices(*out) > 0;
}
fg_face_descriptor add_facet_from_selected_vertices()
{
fg_face_descriptor null_face = boost::graph_traits<Face_graph>::null_face();
if(selected_vertices.size() != 3) // NYI
return null_face;
// since the selected vertices are a set, we lost order in the process,
// so find back the correct orientation
std::array<fg_vertex_descriptor, 3> vs;
for(std::size_t i=0; i<3; ++i)
vs[i] = *(std::next(selected_vertices.begin(), i));
int pos_counter = 0, neg_counter = 0;
for(std::size_t i=0; i<3; ++i)
{
auto res = halfedge(vs[i], vs[(i+1)%3], *polyhedron());
if(res.second && !is_border(res.first, *polyhedron()))
{
// the halfedge 'vs[i] - vs[i+1]' already exists in the graph and is not border,
// so vote for orienting the facet the other way
++neg_counter;
}
res = halfedge(vs[(i+1)%3], vs[i], *polyhedron());
if(res.second && !is_border(res.first, *polyhedron()))
{
// the halfedge 'vs[i+1] - vs[i]' already exists in the graph and is not border,
// so vote for keeping the current orientationorientation
++pos_counter;
}
}
if(pos_counter > 0 && neg_counter > 0)
{
// disagreement, can't insert the face (@todo duplicate and insert?)
std::cerr << "Failed to find a valid orientation (" << pos_counter << " VS " << neg_counter << ")!" << std::endl;
return null_face;
}
else if(neg_counter > 0)
{
std::swap(vs[0], vs[1]);
}
fg_face_descriptor new_f = CGAL::Euler::add_face(vs, *polyhedron());
const bool successful_insertion = (new_f != null_face);
if(successful_insertion)
{
selected_vertices.clear();
invalidateOpenGLBuffers();
changed_with_poly_item();
}
else
{
std::cerr << "Failed to insert face!" << std::endl;
}
return new_f;
}
void select_sharp_edges(const double angle)
{
CGAL::detect_sharp_edges(polyhedron(), angle);
boost::property_map<Face_graph,CGAL::edge_is_feature_t>::type is_feature = get(CGAL::edge_is_feature,*polyhedron());
for(fg_edge_descriptor e : edges(*polyhedron()))
{
if (get(is_feature,e))
selected_edges.insert(e);
}
invalidateOpenGLBuffers();
}
void changed_with_poly_item() {
// no need to update indices
poly_item->invalidateOpenGLBuffers();
Q_EMIT poly_item->itemChanged();
compute_normal_maps();
Q_EMIT itemChanged();
}
void setItemIsMulticolor(bool b) {
poly_item->setItemIsMulticolor(b);
poly_item->computeItemColorVectorAutomatically(b);
}
void selection_changed(bool);
void updateDisplayedIds(QEvent *e);
Q_SIGNALS:
void updateInstructions(QString);
void simplicesSelected(CGAL::Three::Scene_item*);
void isCurrentlySelected(Scene_facegraph_item_k_ring_selection*);
void printMessage(QString);
public Q_SLOTS:
void connectNewViewer(QObject* o)
{
o->installEventFilter(this);
}
void update_poly();
void on_Ctrlz_pressed();
void on_Ctrlu_pressed();
void emitTempInstruct();
void resetIsTreated();
void save_handleType();
void set_operation_mode(int mode);
void set_highlighting(bool b);
void invalidateOpenGLBuffers();
void validateMoveVertex();
void compute_normal_maps();
void clearHL();
QString toolTip() const;
// slots are called by signals of polyhedron_k_ring_selector
void selected(const std::set<fg_vertex_descriptor>& m)
{ has_been_selected(m); }
void selected(const std::set<fg_face_descriptor>& m)
{ has_been_selected(m); }
void selected(const std::set<fg_edge_descriptor>& m)
{ has_been_selected(m); }
void selected_HL(const std::set<fg_vertex_descriptor>& m);
void selected_HL(const std::set<fg_face_descriptor>& m);
void selected_HL(const std::set<fg_edge_descriptor>& m);
void poly_item_changed();
void endSelection(){
Q_EMIT simplicesSelected(this);
}
void toggle_insert(bool b)
{
is_insert = b;
}
void updateTick();
void moveVertex();
protected:
bool eventFilter(QObject* /*target*/, QEvent * gen_event)
{
if(gen_event->type() == QEvent::KeyPress
&& static_cast<QKeyEvent*>(gen_event)->key()==Qt::Key_Z)
{
QKeyEvent *keyEvent = static_cast<QKeyEvent*>(gen_event);
if(keyEvent->modifiers().testFlag(Qt::ControlModifier)){
on_Ctrlz_pressed();
return true;
}
}
else if(gen_event->type() == QEvent::KeyPress
&& static_cast<QKeyEvent*>(gen_event)->key()==Qt::Key_U)
{
QKeyEvent *keyEvent = static_cast<QKeyEvent*>(gen_event);
if(keyEvent->modifiers().testFlag(Qt::ControlModifier))
{
on_Ctrlu_pressed();
return true;
}
}
updateDisplayedIds(gen_event);
if(!visible() || !k_ring_selector.state.shift_pressing) { return false; }
if(gen_event->type() == QEvent::Wheel)
{
QWheelEvent *event = static_cast<QWheelEvent*>(gen_event);
int steps = event->angleDelta().y()/120;
if(do_process)
{
expand_or_reduce(steps);
do_process = false;
QTimer::singleShot(0,this, [this](){do_process = true;});
}
return true;
}
return false;
}
template<class HandleType>
void remove_erased_handles() {
typedef Selection_traits<HandleType, Scene_polyhedron_selection_item> Tr;
Tr tr(this);
if(tr.container().empty()) { return;}
std::vector<HandleType> exists;
for(typename Tr::Iterator it = tr.iterator_begin() ; it != tr.iterator_end(); ++it) {
if(tr.container().count(*it)) {
exists.push_back(*it);
}
}
tr.container().clear();
for(typename std::vector<HandleType>::iterator it = exists.begin(); it != exists.end(); ++it) {
tr.container().insert(*it);
}
}
void join_vertex(Scene_polyhedron_selection_item::fg_edge_descriptor ed)
{
CGAL::Euler::join_vertex(halfedge(ed, *polyhedron()),*polyhedron());
}
void selectPath(fg_vertex_descriptor vh);
//Generic class
template<typename HandleRange>
bool treat_selection(const HandleRange&)
{
qDebug()<<"ERROR : unknown HandleRange";
return false;
}
template<typename HandleRange>
bool treat_classic_selection(const HandleRange& selection);
//Specialization for set<fg_vertex_descriptor>
bool treat_selection(const std::set<fg_vertex_descriptor>& selection);
bool treat_selection(const std::set<fg_edge_descriptor>& selection);
bool treat_selection(const std::set<fg_face_descriptor>& selection);
bool treat_selection(const std::vector<fg_face_descriptor>& selection);
fg_face_descriptor get_face(fg_face_descriptor fh)
{ return fh; }
fg_face_descriptor get_face(fg_vertex_descriptor)
{ return boost::graph_traits<Face_graph>::null_face(); }
fg_face_descriptor get_face(fg_edge_descriptor)
{ return boost::graph_traits<Face_graph>::null_face(); }
template<class HandleType>
void has_been_selected(const std::set<HandleType>& selection)
{
if(!visible()) { return; }
if (get_active_handle_type() == Active_handle::CONNECTED_COMPONENT)
{
Selection_traits<fg_edge_descriptor,
Scene_polyhedron_selection_item> tr(this);
std::vector<bool> mark(tr.size(), false);
for(fg_edge_descriptor e : selected_edges)
mark[tr.id(e)] = true;
std::vector<fg_face_descriptor> selected_cc;
typedef typename boost::property_map<Face_graph,boost::edge_index_t>::type PM;
CGAL::Polygon_mesh_processing::connected_component(
get_face(*selection.begin()),
*polyhedron(),
std::back_inserter(selected_cc),
CGAL::parameters::edge_is_constrained_map(
Is_selected_property_map<fg_edge_descriptor,PM>(mark, get(boost::edge_index,*polyhedron()))));
treat_selection(selected_cc);
}
else
{
treat_selection(selection);
}
}
typedef boost::property_map<Face_graph,boost::edge_index_t>::type Face_graph_edge_index_pm;
public:
Is_selected_property_map<fg_edge_descriptor, Face_graph_edge_index_pm>
selected_edges_pmap(std::vector<bool>& mark)
{
Selection_traits<fg_edge_descriptor,
Scene_polyhedron_selection_item> tr(this);
for (unsigned int i = 0; i < mark.size(); ++i)
mark[i] = false;
for(fg_edge_descriptor e : selected_edges)
mark[tr.id(e)] = true;
return Is_selected_property_map<fg_edge_descriptor, Face_graph_edge_index_pm>(mark, get(boost::edge_index,*polyhedron()));
}
Is_constrained_map<Selection_set_edge> constrained_edges_pmap()
{
return Is_constrained_map<Selection_set_edge>(&selected_edges);
}
Is_constrained_map<Selection_set_vertex> constrained_vertices_pmap()
{
return Is_constrained_map<Selection_set_vertex>(&selected_vertices);
}
protected:
// members
std::string file_name_holder;
Scene_facegraph_item_k_ring_selection k_ring_selector;
// action state
bool is_insert;
bool do_process;
public:
// selection
Selection_set_vertex selected_vertices;
Selection_set_facet selected_facets;
Selection_set_edge selected_edges; // stores one halfedge for each pair (halfedge with minimum address)
Selection_set_vertex fixed_vertices;
Selection_set_vertex temp_selected_vertices;
Selection_set_facet temp_selected_facets;
Selection_set_edge temp_selected_edges; // stores one halfedge for each pair (halfedge with minimum address)
Selection_set_vertex HL_selected_vertices;
Selection_set_facet HL_selected_facets;
Selection_set_edge HL_selected_edges; // stores one halfedge for each pair (halfedge with minimum address)
protected :
friend struct Scene_polyhedron_selection_item_priv;
Scene_polyhedron_selection_item_priv *d;
struct Update_indices_visitor
{
Selection_set_vertex& m_vertices;
Selection_set_edge& m_edges;
Selection_set_facet& m_facets;
FaceGraph& m_mesh;
Update_indices_visitor(Selection_set_vertex& vertices,
Selection_set_edge& edges,
Selection_set_facet& facets,
FaceGraph& mesh)
: m_vertices(vertices), m_edges(edges), m_facets(facets), m_mesh(mesh)
{}
template<typename V2V, typename E2E, typename F2F>
void operator()(const V2V& v2v, const E2E& e2e, const F2F& f2f)
{
//in *2* maps,
//left is old simplex, right is new simplex
Selection_set_vertex new_vertices;
Selection_set_edge new_edges;
Selection_set_facet new_facets;
for(vertex_descriptor v : m_vertices)
{
if(v2v[v] != boost::graph_traits<SMesh>::null_vertex()
&& int(v2v[v]) < static_cast<int>(m_mesh.number_of_vertices()))
new_vertices.insert(v2v[v]);
}
m_vertices.clear();
m_vertices.insert(new_vertices.begin(), new_vertices.end());
for (fg_edge_descriptor e : m_edges)
{
halfedge_descriptor h = halfedge(e, m_mesh);
if(e2e[h] != boost::graph_traits<SMesh>::null_halfedge()
&& int(e2e[h]) < static_cast<int>(m_mesh.number_of_halfedges()))
new_edges.insert(edge(e2e[h], m_mesh));
}
m_edges.clear();
m_edges.insert(new_edges.begin(), new_edges.end());
for (face_descriptor f : m_facets)
if(f2f[f] != boost::graph_traits<SMesh>::null_face()
&& int(f2f[f]) < static_cast<int>(m_mesh.number_of_faces()))
new_facets.insert(f2f[f]);
m_facets.clear();
m_facets.insert(new_facets.begin(), new_facets.end());
}
};
public:
//statistics
enum STATS
{
// Properties
NB_CONNECTED_COMPOS = 0,
NB_HOLES,
GENUS,
IS_PURE_TRIANGLE,
IS_PURE_QUAD,
AREA,
VOLUME,
SELFINTER,
// Vertices
NB_VERTICES,
// Facets
NB_FACETS,
NB_DEGENERATE_FACES,
MIN_AREA,
MAX_AREA,
MED_AREA,
MEAN_AREA,
MIN_ALTITUDE,
MIN_ASPECT_RATIO,
MAX_ASPECT_RATIO,
MEAN_ASPECT_RATIO,
// Edges
NB_EDGES,
NB_BORDER_EDGES,
NB_DEGENERATE_EDGES,
MIN_LENGTH,
MAX_LENGTH,
MED_LENGTH,
MEAN_LENGTH,
// Angles
MIN_ANGLE,
MAX_ANGLE,
MEAN_ANGLE
};
bool has_stats()const {return true;}
QString computeStats(int type);
CGAL::Three::Scene_item::Header_data header() const ;
void set_num_faces(const std::size_t n);
};
#endif