cgal/Surface_mesh_parameterization/include/CGAL/Taucs_matrix.h

466 lines
15 KiB
C++

// Copyright (c) 2005-2008 INRIA (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Laurent Saboret, Pierre Alliez, Bruno Levy
#ifndef CGAL_TAUCS_MATRIX_H
#define CGAL_TAUCS_MATRIX_H
#include <CGAL/basic.h> // include basic.h before testing #defines
#ifdef CGAL_USE_TAUCS
#include <CGAL/Taucs_fix.h>
#include <CGAL/assertions.h>
#include <cstring>
#include <vector>
namespace CGAL {
/// @cond SKIP_IN_MANUAL
// Forward declaration
template<class T> struct Taucs_traits;
/// The class Taucs_matrix
/// is a C++ wrapper around TAUCS' matrix type taucs_ccs_matrix.
///
/// This kind of matrix can be either symmetric or not. Symmetric
/// matrices store only the lower triangle.
///
/// \cgalModels `SparseLinearAlgebraTraits_d::Matrix`
///
/// @param T Number type. Tested with T = taucs_single or taucs_double.
/// May also work with T = taucs_dcomplex and taucs_scomplex.
template<class T>
struct Taucs_matrix
{
// Public types
public:
typedef T NT;
//__________________________________________________
// Private types
private:
/**
* A column of a Taucs_matrix. The column is
* compressed, and stored in the form of
* a vector of values + a vector of indices.
*/
class Column
{
public:
// Vector of values + vector of indices (linked)
std::vector<T> m_values;
std::vector<int> m_indices;
public:
// Return the number of elements in the column
int size() const { return static_cast<int>(m_values.size()); }
// return address of column{index}
// (NULL if coefficient does not exist).
const T* get_coef_addr(int index) const
{
// Search for element in vectors
std::vector<int>::const_iterator index_it;
typename std::vector<T>::const_iterator value_it;
for (index_it = m_indices.begin(), value_it = m_values.begin();
index_it != m_indices.end();
index_it++, value_it++)
{
if(*index_it == index)
return &*value_it; // return address
}
// Element doesn't exist if we reach this point
return NULL;
}
// column{index} <- column{index} + val
void add_coef(int index, T val)
{
// Search for element in m_values[]
T* coef_addr = (T*) get_coef_addr(index);
if (coef_addr == NULL)
{
// if the coefficient doesn't exist yet
m_indices.push_back(index);
m_values.push_back(val);
}
else
{
// if the coefficient already exists
*coef_addr += val; // +=
}
}
// column{index} <- val.
void set_coef(int index, T val)
{
// Search for element in m_values[]
T* coef_addr = (T*) get_coef_addr(index);
if (coef_addr == NULL)
{
// if the coefficient doesn't exist yet
m_indices.push_back(index);
m_values.push_back(val);
}
else
{
// if the coefficient already exists
*coef_addr = val; // =
}
}
// return column{index} (0 by default)
T get_coef(int index) const
{
// Search for element in m_values[]
const T* coef_addr = get_coef_addr(index);
if (coef_addr == NULL)
return 0; // if the coefficient doesn't exist
else
return *coef_addr;
}
}; // class Column
//__________________________________________________
// Public operations
public:
/// Create a square matrix initialized with zeros.
Taucs_matrix(int dim, ///< Matrix dimension.
bool is_symmetric = false) ///< Symmetric/hermitian?
{
CGAL_precondition(dim > 0);
m_row_dimension = dim;
m_column_dimension = dim;
m_is_symmetric = is_symmetric;
m_columns = new Column[m_column_dimension];
m_matrix = NULL;
}
/// Create a rectangular matrix initialized with zeros.
///
/// \pre rows == columns if is_symmetric is true.
Taucs_matrix(int rows, ///< Number of rows.
int columns, ///< Number of columns.
bool is_symmetric = false) ///< Symmetric/hermitian?
{
CGAL_precondition(rows > 0);
CGAL_precondition(columns > 0);
if (m_is_symmetric) {
CGAL_precondition(rows == columns);
}
m_row_dimension = rows;
m_column_dimension = columns;
m_is_symmetric = is_symmetric;
m_columns = new Column[m_column_dimension];
m_matrix = NULL;
}
/// Delete this object and the wrapped TAUCS matrix.
~Taucs_matrix()
{
// Delete the columns array
delete[] m_columns;
m_columns = NULL;
// Delete the the wrapped TAUCS matrix
if (m_matrix != NULL) {
taucs_ccs_free(m_matrix);
m_matrix = NULL;
}
}
/// Return the matrix number of rows
int row_dimension() const { return m_row_dimension; }
/// Return the matrix number of columns
int column_dimension() const { return m_column_dimension; }
/// Read access to a matrix coefficient.
///
/// \pre 0 <= i < row_dimension().
/// \pre 0 <= j < column_dimension().
T get_coef(int i, int j) const
{
CGAL_precondition(i < m_row_dimension);
CGAL_precondition(j < m_column_dimension);
// For symmetric matrices, we store only the lower triangle
// => swap i and j if (i, j) belongs to the upper triangle
if (m_is_symmetric && (j > i))
std::swap(i, j);
// Construct back the m_columns[] array after a call to get_taucs_matrix()
if (m_columns == NULL)
construct_back_columns();
return m_columns[j].get_coef(i);
}
/// Write access to a matrix coefficient: a_ij <- val.
///
/// Optimizations:
/// - For symmetric matrices, Taucs_matrix stores only the lower triangle
/// set_coef() does nothing if (i, j) belongs to the upper triangle.
/// - Caller can optimize this call by setting 'new_coef' to true
/// if the coefficient does not already exist in the matrix.
///
/// \pre 0 <= i < row_dimension().
/// \pre 0 <= j < column_dimension().
void set_coef(int i, int j, T val, bool new_coef = false)
{
CGAL_precondition(i < m_row_dimension);
CGAL_precondition(j < m_column_dimension);
if (m_is_symmetric && (j > i))
return;
// Construct back the m_columns[] array after a call to get_taucs_matrix()
if (m_columns == NULL)
construct_back_columns();
// if caller knows that the coefficient doesn't exist yet
if (new_coef)
{
m_columns[j].m_indices.push_back(i);
m_columns[j].m_values.push_back(val);
}
else
{
m_columns[j].set_coef(i, val);
}
}
/// Write access to a matrix coefficient: a_ij <- a_ij + val.
///
/// Optimization:
/// For symmetric matrices, Taucs_matrix stores only the lower triangle
/// add_coef() does nothing if (i, j) belongs to the upper triangle.
///
/// \pre 0 <= i < row_dimension().
/// \pre 0 <= j < column_dimension().
void add_coef(int i, int j, T val)
{
CGAL_precondition(i < m_row_dimension);
CGAL_precondition(j < m_column_dimension);
if (m_is_symmetric && (j > i))
return;
// Construct back the m_columns[] array after a call to get_taucs_matrix()
if (m_columns == NULL)
construct_back_columns();
m_columns[j].add_coef(i, val);
}
/// Construct and return the TAUCS matrix wrapped by this object.
/// The TAUCS matrix returned by this method is valid
/// only until the next call to get_coef(), set_coef() or add_coef().
//
// Implementation note: this method deletes m_columns[] to save memory.
const taucs_ccs_matrix* get_taucs_matrix() const
{
if (m_matrix == NULL)
{
CGAL_precondition(m_columns != NULL);
// Convert matrix's T type to the corresponding TAUCS constant
int flags = Taucs_traits<T>::TAUCS_FLAG;
// We store only the lower triangle of symmetric matrices
if (m_is_symmetric)
flags |= TAUCS_TRIANGULAR | TAUCS_SYMMETRIC | TAUCS_LOWER;
// Compute the number of non null elements in the matrix
int nb_max_elements = 0;
for (int col=0; col < m_column_dimension; col++)
nb_max_elements += m_columns[col].size();
// Allocate m_matrix
m_matrix = taucs_ccs_create(m_row_dimension, m_column_dimension, nb_max_elements, flags);
// Fill m_matrix. TAUCS matrix format is:
// - rowind[] = array of non null elements of the matrix, ordered by columns
// - values[] = array of row index of each element of rowind[]
// - colptr[j] is the index of the first element of the column j (or where it
// should be if it doesn't exist) + the past-the-end index of the last column
m_matrix->colptr[0] = 0;
for (int col=0; col < m_column_dimension; col++)
{
int first_index = m_matrix->colptr[col]; // Index of 1st non null element of the column
int nb_elements = m_columns[col].size(); // Number of non null elements of the column
// Fast copy of column indices and values
std::memcpy(&m_matrix->rowind[first_index], &m_columns[col].m_indices[0], nb_elements*sizeof(int));
T* taucs_values = (T*) m_matrix->values.v;
std::memcpy(&taucs_values[first_index], &m_columns[col].m_values[0], nb_elements*sizeof(T));
// Start of next column will be:
m_matrix->colptr[col+1] = first_index + nb_elements;
}
// Delete m_columns[] to save memory.
delete[] m_columns;
m_columns = NULL;
}
CGAL_postcondition(m_matrix != NULL);
CGAL_postcondition(m_columns == NULL);
return m_matrix;
}
private:
// Construct back the m_columns[] array after a call to get_taucs_matrix(),
// then delete m_matrix.
void construct_back_columns() const
{
if (m_columns == NULL)
{
CGAL_precondition(m_matrix != NULL);
// Allocate m_columns[].
m_columns = new Column[m_column_dimension];
// Fill m_columns[]. TAUCS matrix format is:
// - rowind[] = array of non null elements of the matrix, ordered by columns
// - values[] = array of row index of each element of rowind[]
// - colptr[j] is the index of the first element of the column j (or where it
// should be if it doesn't exist) + the past-the-end index of the last column
for (int col=0; col < m_column_dimension; col++)
{
int first_index = m_matrix->colptr[col]; // Index of 1st non null element of the column
int nb_elements = m_matrix->colptr[col+1] - first_index;
// Number of non null elements of the column
// Fast copy of column indices and values
m_columns[col].m_indices.assign(&m_matrix->rowind[first_index],
&m_matrix->rowind[first_index + nb_elements - 1]);
T* taucs_values = (T*) m_matrix->values.v;
m_columns[col].m_values.assign(&taucs_values[first_index],
&taucs_values[first_index + nb_elements - 1]);
}
// Delete m_matrix
taucs_ccs_free(m_matrix);
m_matrix = NULL;
}
CGAL_postcondition(m_columns != NULL);
CGAL_postcondition(m_matrix == NULL);
}
/// Taucs_matrix cannot be copied (yet)
Taucs_matrix(const Taucs_matrix& rhs);
Taucs_matrix& operator=(const Taucs_matrix& rhs);
// Fields
private:
// Matrix dimensions
int m_row_dimension, m_column_dimension;
// Symmetric/hermitian?
bool m_is_symmetric;
// Matrix as a Columns array or a TAUCS matrix.
// The matrix exists always as one of these kinds.
mutable Column* m_columns;
mutable taucs_ccs_matrix* m_matrix;
}; // Taucs_matrix
/// The class Taucs_symmetric_matrix is a C++ wrapper
/// around a TAUCS *symmetric* matrix (type taucs_ccs_matrix).
///
/// Symmetric matrices store only the lower triangle.
///
/// \cgalModels `SparseLinearAlgebraTraits_d::Matrix`
///
/// @param T Number type. Tested with T = taucs_single or taucs_double.
/// May also work with T = taucs_dcomplex and taucs_scomplex.
template<class T>
struct Taucs_symmetric_matrix
: public Taucs_matrix<T>
{
// Public types
public:
typedef T NT;
// Public operations
public:
/// Create a square *symmetric* matrix initialized with zeros.
Taucs_symmetric_matrix(int dim) ///< Matrix dimension.
: Taucs_matrix<T>(dim, true /* symmetric */)
{
}
/// Create a square *symmetric* matrix initialized with zeros.
///
/// \pre rows == columns.
Taucs_symmetric_matrix(int rows, ///< Number of rows.
int columns) ///< Number of columns.
: Taucs_matrix<T>(rows, columns, true /* symmetric */)
{
}
};
// Utility class for Taucs_matrix
// Convert matrix's T type to the corresponding TAUCS constant (called TAUCS_FLAG)
template<class T> struct Taucs_traits {};
template<> struct Taucs_traits<taucs_double> {
enum { TAUCS_FLAG = TAUCS_DOUBLE };
};
template<> struct Taucs_traits<taucs_single> {
enum { TAUCS_FLAG = TAUCS_SINGLE };
};
template<> struct Taucs_traits<taucs_dcomplex> {
enum { TAUCS_FLAG = TAUCS_DCOMPLEX };
};
template<> struct Taucs_traits<taucs_scomplex> {
enum { TAUCS_FLAG = TAUCS_SCOMPLEX };
};
/// @endcond
} //namespace CGAL
#endif
#endif // CGAL_TAUCS_MATRIX_H