mirror of https://github.com/CGAL/cgal
401 lines
13 KiB
C++
401 lines
13 KiB
C++
#ifndef CLUSTER_CLASSIFICATION_H
|
|
#define CLUSTER_CLASSIFICATION_H
|
|
|
|
//#define CGAL_DO_NOT_USE_BOYKOV_KOLMOGOROV_MAXFLOW_SOFTWARE
|
|
#define CGAL_CLASSIFICATION_VERBOSE
|
|
|
|
#include <CGAL/Three/Scene_item.h>
|
|
|
|
#include "Scene_points_with_normal_item.h"
|
|
#include "Item_classification_base.h"
|
|
#include "Kernel_type.h"
|
|
#include "Point_set_3.h"
|
|
|
|
#include <CGAL/Classification.h>
|
|
|
|
#include <iostream>
|
|
|
|
typedef CGAL::Parallel_if_available_tag Concurrency_tag;
|
|
|
|
class Cluster_classification : public Item_classification_base
|
|
{
|
|
public:
|
|
typedef Kernel::Point_3 Point_3;
|
|
typedef Kernel::Vector_3 Vector_3;
|
|
|
|
typedef Point_set::Point_map Point_map;
|
|
typedef Point_set::Vector_map Vector_map;
|
|
|
|
typedef CGAL::Classification::Point_set_feature_generator<Kernel, Point_set, Point_map> Generator;
|
|
typedef CGAL::Classification::Local_eigen_analysis Local_eigen_analysis;
|
|
typedef CGAL::Classification::Feature::Cluster_mean_of_feature Mean_of_feature;
|
|
typedef CGAL::Classification::Feature::Cluster_variance_of_feature Variance_of_feature;
|
|
|
|
typedef CGAL::Classification::Cluster<Point_set, Point_map> Cluster;
|
|
|
|
struct Point_set_with_cluster_info
|
|
: public CGAL::cpp98::unary_function<const Point_set::Index&,
|
|
std::pair<Kernel::Point_3, int> >
|
|
{
|
|
Point_set* point_set;
|
|
Point_set::Property_map<int>* cluster_id;
|
|
|
|
Point_set_with_cluster_info (Point_set* point_set,
|
|
Point_set::Property_map<int>& cluster_id)
|
|
: point_set (point_set)
|
|
, cluster_id (&cluster_id)
|
|
{ }
|
|
|
|
std::pair<Kernel::Point_3, int> operator() (const Point_set::Index& idx) const
|
|
{
|
|
return std::make_pair (point_set->point(idx), (*cluster_id)[idx]);
|
|
}
|
|
|
|
};
|
|
|
|
public:
|
|
|
|
Cluster_classification(Scene_points_with_normal_item* points);
|
|
~Cluster_classification();
|
|
|
|
CGAL::Three::Scene_item* item() { return m_points; }
|
|
void erase_item() { m_points = NULL; }
|
|
|
|
CGAL::Bbox_3 bbox()
|
|
{
|
|
if (m_points->point_set()->nb_selected_points() == 0)
|
|
return m_points->bbox();
|
|
|
|
CGAL::Bbox_3 bb = CGAL::bbox_3 (boost::make_transform_iterator
|
|
(m_points->point_set()->first_selected(),
|
|
CGAL::Property_map_to_unary_function<Point_set::Point_map>
|
|
(m_points->point_set()->point_map())),
|
|
boost::make_transform_iterator
|
|
(m_points->point_set()->end(),
|
|
CGAL::Property_map_to_unary_function<Point_set::Point_map>
|
|
(m_points->point_set()->point_map())));
|
|
|
|
double xcenter = (bb.xmax() + bb.xmin()) / 2.;
|
|
double ycenter = (bb.ymax() + bb.ymin()) / 2.;
|
|
double zcenter = (bb.zmax() + bb.zmin()) / 2.;
|
|
|
|
double dx = bb.xmax() - bb.xmin();
|
|
double dy = bb.ymax() - bb.ymin();
|
|
double dz = bb.zmax() - bb.zmin();
|
|
|
|
dx *= 10.;
|
|
dy *= 10.;
|
|
dz *= 10.;
|
|
|
|
return CGAL::Bbox_3 (xcenter - dx, ycenter - dy, zcenter - dz,
|
|
xcenter + dx, ycenter + dy, zcenter + dz);
|
|
}
|
|
|
|
void compute_features (std::size_t nb_scales, float voxel_size);
|
|
void add_remaining_point_set_properties_as_features(Feature_set& feature_set);
|
|
|
|
void select_random_region();
|
|
|
|
void add_cluster_features ()
|
|
{
|
|
m_eigen = boost::make_shared<Local_eigen_analysis>
|
|
(Local_eigen_analysis::create_from_point_clusters(m_clusters,
|
|
Concurrency_tag()));
|
|
|
|
m_features.template add<CGAL::Classification::Feature::Cluster_size> (m_clusters);
|
|
m_features.template add<CGAL::Classification::Feature::Cluster_vertical_extent> (m_clusters);
|
|
|
|
m_features.template add<CGAL::Classification::Feature::Eigenvalue> (m_clusters, *m_eigen, 0);
|
|
m_features.template add<CGAL::Classification::Feature::Eigenvalue> (m_clusters, *m_eigen, 1);
|
|
m_features.template add<CGAL::Classification::Feature::Eigenvalue> (m_clusters, *m_eigen, 2);
|
|
|
|
// m_features.template add<CGAL::Classification::Feature::Linearity> (m_clusters, *m_eigen);
|
|
// m_features.template add<CGAL::Classification::Feature::Planarity> (m_clusters, *m_eigen);
|
|
// m_features.template add<CGAL::Classification::Feature::Sphericity> (m_clusters, *m_eigen);
|
|
// m_features.template add<CGAL::Classification::Feature::Omnivariance> (m_clusters, *m_eigen);
|
|
// m_features.template add<CGAL::Classification::Feature::Anisotropy> (m_clusters, *m_eigen);
|
|
// m_features.template add<CGAL::Classification::Feature::Eigentropy> (m_clusters, *m_eigen);
|
|
// m_features.template add<CGAL::Classification::Feature::Sum_eigenvalues> (m_clusters, *m_eigen);
|
|
// m_features.template add<CGAL::Classification::Feature::Surface_variation> (m_clusters, *m_eigen);
|
|
// m_features.template add<CGAL::Classification::Feature::Verticality<Kernel> > (m_clusters, *m_eigen);
|
|
}
|
|
|
|
template <typename Type>
|
|
bool try_adding_simple_feature (Feature_set& feature_set, const std::string& name)
|
|
{
|
|
typedef typename Point_set::template Property_map<Type> Pmap;
|
|
bool okay = false;
|
|
Pmap pmap;
|
|
boost::tie (pmap, okay) = m_points->point_set()->template property_map<Type>(name.c_str());
|
|
if (okay)
|
|
feature_set.template add<CGAL::Classification::Feature::Simple_feature <Point_set, Pmap> >
|
|
(*(m_points->point_set()), pmap, name.c_str());
|
|
|
|
return okay;
|
|
}
|
|
|
|
void add_selection_to_training_set (std::size_t label)
|
|
{
|
|
for (Point_set::const_iterator it = m_points->point_set()->first_selected();
|
|
it != m_points->point_set()->end(); ++ it)
|
|
{
|
|
int cid = m_cluster_id[*it];
|
|
if (cid != -1)
|
|
{
|
|
m_clusters[cid].training() = int(label);
|
|
m_clusters[cid].label() = int(label);
|
|
}
|
|
}
|
|
|
|
m_points->resetSelection();
|
|
if (m_index_color == 1 || m_index_color == 2)
|
|
change_color (m_index_color);
|
|
}
|
|
void reset_training_set(std::size_t label)
|
|
{
|
|
for (std::size_t i = 0; i < m_clusters.size(); ++ i)
|
|
if (m_clusters[i].training() == int(label))
|
|
m_clusters[i].training() = -1;
|
|
|
|
if (m_index_color == 1 || m_index_color == 2)
|
|
change_color (m_index_color);
|
|
}
|
|
void reset_training_set_of_selection()
|
|
{
|
|
for (Point_set::const_iterator it = m_points->point_set()->first_selected();
|
|
it != m_points->point_set()->end(); ++ it)
|
|
{
|
|
int cid = m_cluster_id[*it];
|
|
if (cid != -1)
|
|
{
|
|
m_clusters[cid].training() = -1;
|
|
m_clusters[cid].label() = -1;
|
|
}
|
|
}
|
|
if (m_index_color == 1 || m_index_color == 2)
|
|
change_color (m_index_color);
|
|
}
|
|
void reset_training_sets()
|
|
{
|
|
for (std::size_t i = 0; i < m_clusters.size(); ++ i)
|
|
m_clusters[i].training() = -1;
|
|
if (m_index_color == 1 || m_index_color == 2)
|
|
change_color (m_index_color);
|
|
}
|
|
void validate_selection ()
|
|
{
|
|
for (Point_set::const_iterator it = m_points->point_set()->first_selected();
|
|
it != m_points->point_set()->end(); ++ it)
|
|
{
|
|
int cid = m_cluster_id[*it];
|
|
if (cid != -1)
|
|
m_clusters[cid].training() = m_clusters[cid].label();
|
|
}
|
|
|
|
m_points->resetSelection();
|
|
if (m_index_color == 1 || m_index_color == 2)
|
|
change_color (m_index_color);
|
|
}
|
|
void train(int classifier, const QMultipleInputDialog& dialog);
|
|
bool run (int method, int classifier, std::size_t subdivisions, double smoothing);
|
|
|
|
void update_color () { change_color (m_index_color); }
|
|
void change_color (int index, float* vmin = NULL, float* vmax = NULL);
|
|
CGAL::Three::Scene_item* generate_one_item (const char* name,
|
|
int label) const
|
|
{
|
|
Scene_points_with_normal_item* points_item
|
|
= new Scene_points_with_normal_item;
|
|
|
|
points_item->setName (QString("%1 (%2)").arg(name).arg(m_labels[label]->name().c_str()));
|
|
points_item->setColor (m_label_colors[label]);
|
|
for (Point_set::const_iterator it = m_points->point_set()->begin();
|
|
it != m_points->point_set()->end(); ++ it)
|
|
{
|
|
int cid = m_cluster_id[*it];
|
|
if (cid != -1)
|
|
{
|
|
int c = m_clusters[cid].label();
|
|
if (c == label)
|
|
points_item->point_set()->insert (m_points->point_set()->point(*it));
|
|
}
|
|
}
|
|
return points_item;
|
|
}
|
|
void generate_one_item_per_label(std::vector<CGAL::Three::Scene_item*>& items,
|
|
const char* name) const
|
|
{
|
|
std::vector<Scene_points_with_normal_item*> points_item
|
|
(m_labels.size(), NULL);
|
|
for (std::size_t i = 0; i < m_labels.size(); ++ i)
|
|
{
|
|
points_item[i] = new Scene_points_with_normal_item;
|
|
points_item[i]->setName (QString("%1 (%2)").arg(name).arg(m_labels[i]->name().c_str()));
|
|
points_item[i]->setColor (m_label_colors[i]);
|
|
items.push_back (points_item[i]);
|
|
}
|
|
|
|
for (Point_set::const_iterator it = m_points->point_set()->begin();
|
|
it != m_points->point_set()->end(); ++ it)
|
|
{
|
|
int cid = m_cluster_id[*it];
|
|
if (cid != -1)
|
|
{
|
|
int c = m_clusters[cid].label();
|
|
points_item[c]->point_set()->insert (m_points->point_set()->point(*it));
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
QColor add_new_label (const char* name)
|
|
{
|
|
QColor out = Item_classification_base::add_new_label (name);
|
|
update_comments_of_point_set_item();
|
|
return out;
|
|
}
|
|
|
|
void remove_label (std::size_t position)
|
|
{
|
|
Item_classification_base::remove_label (position);
|
|
|
|
for (std::size_t i = 0; i < m_clusters.size(); ++ i)
|
|
{
|
|
if (m_clusters[i].training() == int(position))
|
|
m_clusters[i].training() = -1;
|
|
else if (m_clusters[i].training() > int(position))
|
|
m_clusters[i].training() --;
|
|
|
|
if (m_clusters[i].label() == int(position))
|
|
m_clusters[i].label() = -1;
|
|
else if (m_clusters[i].label() > int(position))
|
|
m_clusters[i].label() --;
|
|
}
|
|
|
|
update_comments_of_point_set_item();
|
|
}
|
|
|
|
void fill_display_combo_box (QComboBox* cb, QComboBox* cb1) const
|
|
{
|
|
cb->addItem ("Clusters");
|
|
Item_classification_base::fill_display_combo_box(cb, cb1);
|
|
}
|
|
|
|
int real_index_color() const;
|
|
void reset_indices();
|
|
void backup_existing_colors_and_add_new();
|
|
void reset_colors();
|
|
|
|
private:
|
|
|
|
void update_comments_of_point_set_item()
|
|
{
|
|
std::string& comments = m_points->comments();
|
|
|
|
// Remove previously registered labels from comments
|
|
std::string new_comment;
|
|
|
|
std::istringstream stream (comments);
|
|
std::string line;
|
|
while (getline(stream, line))
|
|
{
|
|
std::stringstream iss (line);
|
|
std::string tag;
|
|
if (iss >> tag && tag == "label")
|
|
continue;
|
|
new_comment += line + "\n";
|
|
}
|
|
comments = new_comment;
|
|
|
|
comments += "label -1 unclassified\n";
|
|
for (std::size_t i = 0; i < m_labels.size(); ++ i)
|
|
{
|
|
std::ostringstream oss;
|
|
oss << "label " << i << " " << m_labels[i]->name() << std::endl;
|
|
comments += oss.str();
|
|
}
|
|
}
|
|
|
|
template <typename Classifier>
|
|
bool run (int method, const Classifier& classifier,
|
|
std::size_t subdivisions, double smoothing)
|
|
{
|
|
std::vector<int> indices (m_clusters.size(), -1);
|
|
|
|
if (method == 0)
|
|
CGAL::Classification::classify<Concurrency_tag> (m_clusters,
|
|
m_labels, classifier,
|
|
indices);
|
|
else if (method == 1)
|
|
CGAL::Classification::classify_with_local_smoothing<Concurrency_tag>
|
|
(m_clusters,
|
|
CGAL::Identity_property_map<Cluster>(),
|
|
m_labels, classifier,
|
|
Cluster::Neighbor_query(),
|
|
indices);
|
|
else if (method == 2)
|
|
CGAL::Classification::classify_with_graphcut<Concurrency_tag>
|
|
(m_clusters,
|
|
CGAL::Identity_property_map<Cluster>(),
|
|
m_labels, classifier,
|
|
Cluster::Neighbor_query(),
|
|
smoothing, subdivisions, indices);
|
|
|
|
std::vector<int> ground_truth(m_clusters.size(), -1);
|
|
for (std::size_t i = 0; i < m_clusters.size(); ++ i)
|
|
{
|
|
m_clusters[i].label() = indices[i];
|
|
ground_truth[i] = m_clusters[i].training();
|
|
}
|
|
|
|
if (m_index_color == 1 || m_index_color == 2)
|
|
change_color (m_index_color);
|
|
|
|
std::cerr << "Precision, recall, F1 scores and IoU:" << std::endl;
|
|
|
|
CGAL::Classification::Evaluation eval (m_labels, ground_truth, indices);
|
|
|
|
for (std::size_t i = 0; i < m_labels.size(); ++ i)
|
|
{
|
|
std::cerr << " * " << m_labels[i]->name() << ": "
|
|
<< eval.precision(m_labels[i]) << " ; "
|
|
<< eval.recall(m_labels[i]) << " ; "
|
|
<< eval.f1_score(m_labels[i]) << " ; "
|
|
<< eval.intersection_over_union(m_labels[i]) << std::endl;
|
|
}
|
|
|
|
std::cerr << "Accuracy = " << eval.accuracy() << std::endl
|
|
<< "Mean F1 score = " << eval.mean_f1_score() << std::endl
|
|
<< "Mean IoU = " << eval.mean_intersection_over_union() << std::endl;
|
|
|
|
|
|
return true;
|
|
}
|
|
|
|
Scene_points_with_normal_item* m_points;
|
|
|
|
std::vector<Cluster> m_clusters;
|
|
|
|
Point_set::Property_map<unsigned char> m_red;
|
|
Point_set::Property_map<unsigned char> m_green;
|
|
Point_set::Property_map<unsigned char> m_blue;
|
|
Point_set::Property_map<CGAL::Color> m_color;
|
|
Point_set::Property_map<int> m_cluster_id;
|
|
Point_set::Property_map<int> m_training;
|
|
Point_set::Property_map<int> m_classif;
|
|
|
|
std::vector<std::vector<float> > m_label_probabilities;
|
|
|
|
int m_index_color;
|
|
|
|
boost::shared_ptr<Local_eigen_analysis> m_eigen;
|
|
|
|
bool m_input_is_las;
|
|
|
|
}; // end class Cluster_classification
|
|
|
|
|
|
|
|
|
|
#endif // CLUSTER_CLASSIFICATION_H
|