mirror of https://github.com/CGAL/cgal
420 lines
12 KiB
C++
420 lines
12 KiB
C++
// Copyright (c) 2009 INRIA Sophia-Antipolis (France).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org); you may redistribute it under
|
|
// the terms of the Q Public License version 1.0.
|
|
// See the file LICENSE.QPL distributed with CGAL.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
//
|
|
//
|
|
// Author(s) : Stéphane Tayeb
|
|
//
|
|
//******************************************************************************
|
|
// File Description :
|
|
//
|
|
//******************************************************************************
|
|
|
|
#ifndef CGAL_TRIANGLE_3_LINE_3_INTERSECTION_H
|
|
#define CGAL_TRIANGLE_3_LINE_3_INTERSECTION_H
|
|
|
|
#include <CGAL/kernel_basic.h>
|
|
#include <CGAL/intersections.h>
|
|
|
|
namespace CGAL {
|
|
namespace internal {
|
|
|
|
|
|
template <class K>
|
|
Object
|
|
t3l3_intersection_coplanar_aux(const typename K::Point_3& a,
|
|
const typename K::Point_3& b,
|
|
const typename K::Point_3& c,
|
|
const typename K::Line_3& l,
|
|
const bool negative_side,
|
|
const K& k)
|
|
{
|
|
// This function is designed to clip pq into the triangle abc.
|
|
// Point configuration should be as follows
|
|
//
|
|
// +q
|
|
// | +a
|
|
// |
|
|
// +c | +b
|
|
// |
|
|
// +p
|
|
//
|
|
// We know that c is isolated on the negative side of pq
|
|
|
|
typedef typename K::Point_3 Point_3;
|
|
|
|
typename K::Intersect_3 intersection =
|
|
k.intersect_3_object();
|
|
|
|
typename K::Construct_line_3 line =
|
|
k.construct_line_3_object();
|
|
|
|
typename K::Construct_segment_3 segment =
|
|
k.construct_segment_3_object();
|
|
|
|
// Let's get the intersection points
|
|
Object l_bc_obj = intersection(l,line(b,c));
|
|
const Point_3* l_bc = object_cast<Point_3>(&l_bc_obj);
|
|
if ( NULL == l_bc )
|
|
{
|
|
CGAL_kernel_assertion(false);
|
|
return Object();
|
|
}
|
|
|
|
Object l_ca_obj = intersection(l,line(c,a));
|
|
const Point_3* l_ca = object_cast<Point_3>(&l_ca_obj);
|
|
if ( NULL == l_ca )
|
|
{
|
|
CGAL_kernel_assertion(false);
|
|
return Object();
|
|
}
|
|
|
|
if ( negative_side )
|
|
return make_object(segment(*l_bc, *l_ca));
|
|
else
|
|
return make_object(segment(*l_ca, *l_bc));
|
|
}
|
|
|
|
|
|
template <class K>
|
|
Object
|
|
intersection_coplanar(const typename K::Triangle_3 &t,
|
|
const typename K::Line_3 &l,
|
|
const K & k )
|
|
{
|
|
|
|
CGAL_kernel_precondition( ! k.is_degenerate_3_object()(t) ) ;
|
|
CGAL_kernel_precondition( ! k.is_degenerate_3_object()(l) ) ;
|
|
|
|
typedef typename K::Point_3 Point_3;
|
|
|
|
|
|
typename K::Construct_point_on_3 point_on =
|
|
k.construct_point_on_3_object();
|
|
|
|
typename K::Construct_vertex_3 vertex_on =
|
|
k.construct_vertex_3_object();
|
|
|
|
typename K::Coplanar_orientation_3 coplanar_orientation =
|
|
k.coplanar_orientation_3_object();
|
|
|
|
typename K::Construct_line_3 line =
|
|
k.construct_line_3_object();
|
|
|
|
typename K::Construct_segment_3 segment =
|
|
k.construct_segment_3_object();
|
|
|
|
|
|
const Point_3 & p = point_on(l,0);
|
|
const Point_3 & q = point_on(l,1);
|
|
|
|
const Point_3 & A = vertex_on(t,0);
|
|
const Point_3 & B = vertex_on(t,1);
|
|
const Point_3 & C = vertex_on(t,2);
|
|
|
|
int k0 = 0;
|
|
int k1 = 1;
|
|
int k2 = 2;
|
|
|
|
// Determine the orientation of the triangle in the common plane
|
|
if (coplanar_orientation(A,B,C) != POSITIVE)
|
|
{
|
|
// The triangle is not counterclockwise oriented
|
|
// swap two vertices.
|
|
std::swap(k1,k2);
|
|
}
|
|
|
|
const Point_3& a = vertex_on(t,k0);
|
|
const Point_3& b = vertex_on(t,k1);
|
|
const Point_3& c = vertex_on(t,k2);
|
|
|
|
// Test whether the segment's supporting line intersects the
|
|
// triangle in the common plane
|
|
const Orientation pqa = coplanar_orientation(p,q,a);
|
|
const Orientation pqb = coplanar_orientation(p,q,b);
|
|
const Orientation pqc = coplanar_orientation(p,q,c);
|
|
|
|
|
|
switch ( pqa ) {
|
|
// -----------------------------------
|
|
// pqa POSITIVE
|
|
// -----------------------------------
|
|
case POSITIVE:
|
|
switch ( pqb ) {
|
|
case POSITIVE:
|
|
switch ( pqc ) {
|
|
case POSITIVE:
|
|
// the triangle lies in the positive halfspace
|
|
// defined by the segment's supporting line.
|
|
return Object();
|
|
case NEGATIVE:
|
|
// c is isolated on the negative side
|
|
return t3l3_intersection_coplanar_aux(a,b,c,l,true,k);
|
|
case COLLINEAR:
|
|
return make_object(c);
|
|
}
|
|
|
|
case NEGATIVE:
|
|
if ( POSITIVE == pqc )
|
|
// b is isolated on the negative side
|
|
return t3l3_intersection_coplanar_aux(c,a,b,l,true,k);
|
|
else
|
|
// a is isolated on the positive side (here mb c could be use as
|
|
// an endpoint instead of computing an intersection is some cases)
|
|
return t3l3_intersection_coplanar_aux(b,c,a,l,false,k);
|
|
|
|
case COLLINEAR:
|
|
switch ( pqc ) {
|
|
case POSITIVE:
|
|
return make_object(b);
|
|
case NEGATIVE:
|
|
// a is isolated on the positive side (here mb b could be use as
|
|
// an endpoint instead of computing an intersection)
|
|
return t3l3_intersection_coplanar_aux(b,c,a,l,false,k);
|
|
case COLLINEAR:
|
|
// b,c,p,q are aligned, [p,q]&[b,c] have the same direction
|
|
return make_object(segment(b,c));
|
|
}
|
|
|
|
default: // should not happen.
|
|
CGAL_kernel_assertion(false);
|
|
return Object();
|
|
}
|
|
|
|
// -----------------------------------
|
|
// pqa NEGATIVE
|
|
// -----------------------------------
|
|
case NEGATIVE:
|
|
switch ( pqb ) {
|
|
case POSITIVE:
|
|
if ( POSITIVE == pqc )
|
|
// a is isolated on the negative side
|
|
return t3l3_intersection_coplanar_aux(b,c,a,l,true,k);
|
|
else
|
|
// b is isolated on the positive side (here mb c could be use as
|
|
// an endpoint instead of computing an intersection, in some cases)
|
|
return t3l3_intersection_coplanar_aux(c,a,b,l,false,k);
|
|
|
|
case NEGATIVE:
|
|
switch ( pqc ) {
|
|
case POSITIVE:
|
|
// c is isolated on the positive side
|
|
return t3l3_intersection_coplanar_aux(a,b,c,l,false,k);
|
|
case NEGATIVE:
|
|
// the triangle lies in the negative halfspace
|
|
// defined by the segment's supporting line.
|
|
return Object();
|
|
case COLLINEAR:
|
|
return make_object(c);
|
|
}
|
|
|
|
case COLLINEAR:
|
|
switch ( pqc ) {
|
|
case POSITIVE:
|
|
// a is isolated on the negative side (here mb b could be use as
|
|
// an endpoint instead of computing an intersection)
|
|
return t3l3_intersection_coplanar_aux(b,c,a,l,true,k);
|
|
case NEGATIVE:
|
|
return make_object(b);
|
|
case COLLINEAR:
|
|
// b,c,p,q are aligned, [p,q]&[c,b] have the same direction
|
|
return make_object(segment(c,b));
|
|
}
|
|
|
|
default: // should not happen.
|
|
CGAL_kernel_assertion(false);
|
|
return Object();
|
|
}
|
|
|
|
// -----------------------------------
|
|
// pqa COLLINEAR
|
|
// -----------------------------------
|
|
case COLLINEAR:
|
|
switch ( pqb ) {
|
|
case POSITIVE:
|
|
switch ( pqc ) {
|
|
case POSITIVE:
|
|
return make_object(a);
|
|
case NEGATIVE:
|
|
// b is isolated on the positive side (here mb a could be use as
|
|
// an endpoint instead of computing an intersection)
|
|
return t3l3_intersection_coplanar_aux(c,a,b,l,false,k);
|
|
case COLLINEAR:
|
|
// a,c,p,q are aligned, [p,q]&[c,a] have the same direction
|
|
return make_object(segment(c,a));
|
|
}
|
|
|
|
case NEGATIVE:
|
|
switch ( pqc ) {
|
|
case POSITIVE:
|
|
// b is isolated on the negative side (here mb a could be use as
|
|
// an endpoint instead of computing an intersection)
|
|
return t3l3_intersection_coplanar_aux(c,a,b,l,true,k);
|
|
case NEGATIVE:
|
|
return make_object(a);
|
|
case COLLINEAR:
|
|
// a,c,p,q are aligned, [p,q]&[a,c] have the same direction
|
|
return make_object(segment(a,c));
|
|
}
|
|
|
|
case COLLINEAR:
|
|
switch ( pqc ) {
|
|
case POSITIVE:
|
|
// a,b,p,q are aligned, [p,q]&[a,b] have the same direction
|
|
return make_object(segment(a,b));
|
|
case NEGATIVE:
|
|
// a,b,p,q are aligned, [p,q]&[b,a] have the same direction
|
|
return make_object(segment(b,a));
|
|
case COLLINEAR:
|
|
// case pqc == COLLINEAR is impossible since the triangle is
|
|
// assumed to be non flat
|
|
CGAL_kernel_assertion(false);
|
|
return Object();
|
|
}
|
|
|
|
default: // should not happen.
|
|
CGAL_kernel_assertion(false);
|
|
return Object();
|
|
|
|
}
|
|
|
|
default:// should not happen.
|
|
CGAL_kernel_assertion(false);
|
|
return Object();
|
|
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <class K>
|
|
Object
|
|
intersection(const typename K::Triangle_3 &t,
|
|
const typename K::Line_3 &l,
|
|
const K& k)
|
|
{
|
|
CGAL_kernel_precondition( ! k.is_degenerate_3_object()(t) ) ;
|
|
CGAL_kernel_precondition( ! k.is_degenerate_3_object()(l) ) ;
|
|
|
|
typedef typename K::Point_3 Point_3;
|
|
|
|
typename K::Construct_point_on_3 point_on =
|
|
k.construct_point_on_3_object();
|
|
|
|
typename K::Construct_vertex_3 vertex_on =
|
|
k.construct_vertex_3_object();
|
|
|
|
typename K::Orientation_3 orientation =
|
|
k.orientation_3_object();
|
|
|
|
typename K::Coplanar_orientation_3 coplanar_orientation =
|
|
k.coplanar_orientation_3_object();
|
|
|
|
typename K::Intersect_3 intersection =
|
|
k.intersect_3_object();
|
|
|
|
const Point_3 & a = vertex_on(t,0);
|
|
const Point_3 & b = vertex_on(t,1);
|
|
const Point_3 & c = vertex_on(t,2);
|
|
const Point_3 & p = point_on(l,0);
|
|
const Point_3 & q = point_on(l,1);
|
|
|
|
if ( ( orientation(a,b,c,p) != COPLANAR )
|
|
|| ( orientation(a,b,c,q) != COPLANAR ) )
|
|
{
|
|
const Orientation pqab = orientation(p,q,a,b);
|
|
const Orientation pqbc = orientation(p,q,b,c);
|
|
|
|
switch ( pqab ) {
|
|
case POSITIVE:
|
|
if ( pqbc != NEGATIVE && orientation(p,q,c,a) != NEGATIVE )
|
|
return intersection(l,t.supporting_plane());
|
|
else
|
|
return Object();
|
|
|
|
case NEGATIVE:
|
|
if ( pqbc != POSITIVE && orientation(p,q,c,a) != POSITIVE )
|
|
return intersection(l,t.supporting_plane());
|
|
else
|
|
return Object();
|
|
|
|
case COPLANAR:
|
|
switch ( pqbc ) {
|
|
case POSITIVE:
|
|
if ( orientation(p,q,c,a) != NEGATIVE )
|
|
return intersection(l,t.supporting_plane());
|
|
else
|
|
return Object();
|
|
|
|
case NEGATIVE:
|
|
if ( orientation(p,q,c,a) != POSITIVE )
|
|
return intersection(l,t.supporting_plane());
|
|
else
|
|
return Object();
|
|
|
|
case COPLANAR: // pqa or pqb or pqc are collinear
|
|
return intersection(l,t.supporting_plane());
|
|
|
|
default: // should not happen.
|
|
CGAL_kernel_assertion(false);
|
|
return Object();
|
|
}
|
|
|
|
default: // should not happen.
|
|
CGAL_kernel_assertion(false);
|
|
return Object();
|
|
}
|
|
}
|
|
|
|
// Coplanar case
|
|
return intersection_coplanar(t,l,k);
|
|
}
|
|
|
|
template <class K>
|
|
Object
|
|
intersection(const typename K::Line_3 &l,
|
|
const typename K::Triangle_3 &t,
|
|
const K& k)
|
|
{
|
|
return internal::intersection(t,l,k);
|
|
}
|
|
|
|
|
|
} // end namespace internal
|
|
|
|
template <class K>
|
|
inline
|
|
Object
|
|
intersection(const Triangle_3<K> &t, const Line_3<K> &l)
|
|
{
|
|
return typename K::Intersect_3()(t,l);
|
|
}
|
|
|
|
template <class K>
|
|
inline
|
|
Object
|
|
intersection(const Line_3<K> &l, const Triangle_3<K> &t)
|
|
{
|
|
return typename K::Intersect_3()(t,l);
|
|
}
|
|
|
|
} // end namespace CGAL
|
|
|
|
#endif // CGAL_TRIANGLE_3_LINE_3_INTERSECTION_H
|