cgal/Intersections_3/include/CGAL/Triangle_3_segment_3_inters...

543 lines
17 KiB
C++

// Copyright (c) 2009 GeometryFactory (France), INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Laurent Rineau, Stephane Tayeb
//
//******************************************************************************
// File Description : Implements triangle_3 segment_3 intersection construction.
//
// This implementation is adapted from Triangle_3_Segment_3_do_intersect.h.
//******************************************************************************
#ifndef CGAL_TRIANGLE_3_SEGMENT_3_INTERSECTION_H
#define CGAL_TRIANGLE_3_SEGMENT_3_INTERSECTION_H
#include <CGAL/kernel_basic.h>
#include <CGAL/intersections.h>
namespace CGAL {
namespace internal {
template <class K>
Object
t3s3_intersection_coplanar_aux(const typename K::Point_3& a,
const typename K::Point_3& b,
const typename K::Point_3& c,
const typename K::Point_3& p,
const typename K::Point_3& q,
const bool negative_side,
const K& k)
{
// This function is designed to clip pq into the triangle abc.
// Point configuration should be as follows
//
// +q
// | +a
// |
// +c | +b
// |
// +p
//
// We know that c is isolated on the negative side of pq, but we don't know
// p position wrt [bc]&[ca] and q position wrt [bc]&[ca]
typedef typename K::Point_3 Point_3;
typename K::Coplanar_orientation_3 coplanar_orientation =
k.coplanar_orientation_3_object();
typename K::Intersect_3 intersection =
k.intersect_3_object();
typename K::Construct_line_3 line =
k.construct_line_3_object();
typename K::Construct_segment_3 segment =
k.construct_segment_3_object();
const Orientation bcq = coplanar_orientation(b,c,q);
const Orientation cap = coplanar_orientation(c,a,p);
if ( NEGATIVE == bcq || NEGATIVE == cap )
return Object();
else if ( COLLINEAR == bcq )
// q is inside [c,b], p is outside t (because of pqc)
return make_object(q);
else if ( COLLINEAR == cap )
// p is inside [c,a], q is outside t (because of pqc)
return make_object(p);
else // bcq == POSITIVE && cap == POSITIVE
{
// Here we know the intersection is not empty
// Let's get the intersection points
Point_3 p_side_end_point(p);
if ( NEGATIVE == coplanar_orientation(b,c,p) )
{
Object obj = intersection(line(p,q),line(b,c));
const Point_3* p_temp = object_cast<Point_3>(&obj);
if ( NULL != p_temp )
p_side_end_point = *p_temp;
}
Point_3 q_side_end_point(q);
if ( NEGATIVE == coplanar_orientation(c,a,q) )
{
Object obj = intersection(line(p,q),line(c,a));
const Point_3* p_temp = object_cast<Point_3>(&obj);
if ( NULL != p_temp )
q_side_end_point = *p_temp;
}
if ( negative_side )
return make_object(segment(p_side_end_point, q_side_end_point));
else
return make_object(segment(q_side_end_point, p_side_end_point));
}
}
template <class K>
Object
t3s3_intersection_coplanar_aux(const typename K::Point_3& a,
const typename K::Point_3& b,
const typename K::Point_3& p,
const typename K::Point_3& q,
const K& k)
{
// Builds resulting segment of intersection of [a,b] and [p,q]
// Precondition: [a,b] and [p,q] have the same direction
typename K::Construct_segment_3 segment =
k.construct_segment_3_object();
typename K::Collinear_are_ordered_along_line_3 collinear_ordered =
k.collinear_are_ordered_along_line_3_object();
// possible orders: [p,a,b,q], [p,a,q,b], [a,p,b,q], [a,p,q,b]
if ( collinear_ordered(p,a,q) )
{
// p is before a
if ( collinear_ordered(p,b,q) )
return make_object(segment(a,b));
else
return make_object(segment(a,q));
}
else
{
// p is after a
if ( collinear_ordered(p,b,q) )
return make_object(segment(p,b));
else
return make_object(segment(p,q));
}
}
template <class K>
Object
intersection_coplanar(const typename K::Triangle_3 &t,
const typename K::Segment_3 &s,
const K & k )
{
CGAL_kernel_precondition( ! k.is_degenerate_3_object()(t) ) ;
CGAL_kernel_precondition( ! k.is_degenerate_3_object()(s) ) ;
typedef typename K::Point_3 Point_3;
typename K::Construct_point_on_3 point_on =
k.construct_point_on_3_object();
typename K::Construct_vertex_3 vertex_on =
k.construct_vertex_3_object();
typename K::Coplanar_orientation_3 coplanar_orientation =
k.coplanar_orientation_3_object();
typename K::Collinear_are_ordered_along_line_3 collinear_ordered =
k.collinear_are_ordered_along_line_3_object();
typename K::Construct_line_3 line =
k.construct_line_3_object();
typename K::Construct_segment_3 segment =
k.construct_segment_3_object();
const Point_3 & p = point_on(s,0);
const Point_3 & q = point_on(s,1);
const Point_3 & A = vertex_on(t,0);
const Point_3 & B = vertex_on(t,1);
const Point_3 & C = vertex_on(t,2);
int k0 = 0;
int k1 = 1;
int k2 = 2;
// Determine the orientation of the triangle in the common plane
if (coplanar_orientation(A,B,C) != POSITIVE)
{
// The triangle is not counterclockwise oriented
// swap two vertices.
std::swap(k1,k2);
}
const Point_3& a = vertex_on(t,k0);
const Point_3& b = vertex_on(t,k1);
const Point_3& c = vertex_on(t,k2);
// Test whether the segment's supporting line intersects the
// triangle in the common plane
const Orientation pqa = coplanar_orientation(p,q,a);
const Orientation pqb = coplanar_orientation(p,q,b);
const Orientation pqc = coplanar_orientation(p,q,c);
switch ( pqa ) {
// -----------------------------------
// pqa POSITIVE
// -----------------------------------
case POSITIVE:
switch ( pqb ) {
case POSITIVE:
switch ( pqc ) {
case POSITIVE:
// the triangle lies in the positive halfspace
// defined by the segment's supporting line.
return Object();
case NEGATIVE:
// c is isolated on the negative side
return t3s3_intersection_coplanar_aux(a,b,c,p,q,true,k);
case COLLINEAR:
if ( collinear_ordered(p,c,q) ) // c is inside [p,q]
return make_object(c);
else
return Object();
}
case NEGATIVE:
if ( POSITIVE == pqc )
// b is isolated on the negative side
return t3s3_intersection_coplanar_aux(c,a,b,p,q,true,k);
else
// a is isolated on the positive side
return t3s3_intersection_coplanar_aux(b,c,a,q,p,false,k);
case COLLINEAR:
switch ( pqc ) {
case POSITIVE:
if ( collinear_ordered(p,b,q) ) // b is inside [p,q]
return make_object(b);
else
return Object();
case NEGATIVE:
// a is isolated on the positive side
return t3s3_intersection_coplanar_aux(b,c,a,q,p,false,k);
case COLLINEAR:
// b,c,p,q are aligned, [p,q]&[b,c] have the same direction
return t3s3_intersection_coplanar_aux(b,c,p,q,k);
}
default: // should not happen.
CGAL_kernel_assertion(false);
return Object();
}
// -----------------------------------
// pqa NEGATIVE
// -----------------------------------
case NEGATIVE:
switch ( pqb ) {
case POSITIVE:
if ( POSITIVE == pqc )
// a is isolated on the negative side
return t3s3_intersection_coplanar_aux(b,c,a,p,q,true,k);
else
// b is isolated on the positive side
return t3s3_intersection_coplanar_aux(c,a,b,q,p,false,k);
case NEGATIVE:
switch ( pqc ) {
case POSITIVE:
// c is isolated on the positive side
return t3s3_intersection_coplanar_aux(a,b,c,q,p,false,k);
case NEGATIVE:
// the triangle lies in the negative halfspace
// defined by the segment's supporting line.
return Object();
case COLLINEAR:
if ( collinear_ordered(p,c,q) ) // c is inside [p,q]
return make_object(c);
else
return Object();
}
case COLLINEAR:
switch ( pqc ) {
case POSITIVE:
// a is isolated on the negative side
return t3s3_intersection_coplanar_aux(b,c,a,p,q,true,k);
case NEGATIVE:
if ( collinear_ordered(p,b,q) ) // b is inside [p,q]
return make_object(b);
else
return Object();
case COLLINEAR:
// b,c,p,q are aligned, [p,q]&[c,b] have the same direction
return t3s3_intersection_coplanar_aux(c,b,p,q,k);
}
default: // should not happen.
CGAL_kernel_assertion(false);
return Object();
}
// -----------------------------------
// pqa COLLINEAR
// -----------------------------------
case COLLINEAR:
switch ( pqb ) {
case POSITIVE:
switch ( pqc ) {
case POSITIVE:
if ( collinear_ordered(p,a,q) ) // a is inside [p,q]
return make_object(a);
else
return Object();
case NEGATIVE:
// b is isolated on the positive side
return t3s3_intersection_coplanar_aux(c,a,b,q,p,false,k);
case COLLINEAR:
// a,c,p,q are aligned, [p,q]&[c,a] have the same direction
return t3s3_intersection_coplanar_aux(c,a,p,q,k);
}
case NEGATIVE:
switch ( pqc ) {
case POSITIVE:
// b is isolated on the negative side
return t3s3_intersection_coplanar_aux(c,a,b,p,q,true,k);
case NEGATIVE:
if ( collinear_ordered(p,a,q) ) // a is inside [p,q]
return make_object(a);
else
return Object();
case COLLINEAR:
// a,c,p,q are aligned, [p,q]&[a,c] have the same direction
return t3s3_intersection_coplanar_aux(a,c,p,q,k);
}
case COLLINEAR:
switch ( pqc ) {
case POSITIVE:
// a,b,p,q are aligned, [p,q]&[a,b] have the same direction
return t3s3_intersection_coplanar_aux(a,b,p,q,k);
case NEGATIVE:
// a,b,p,q are aligned, [p,q]&[b,a] have the same direction
return t3s3_intersection_coplanar_aux(b,a,p,q,k);
case COLLINEAR:
// case pqc == COLLINEAR is impossible since the triangle is
// assumed to be non flat
CGAL_kernel_assertion(false);
return Object();
}
default: // should not happen.
CGAL_kernel_assertion(false);
return Object();
}
default:// should not happen.
CGAL_kernel_assertion(false);
return Object();
}
}
template <class K>
Object
intersection(const typename K::Triangle_3 &t,
const typename K::Segment_3 &s,
const K & k)
{
CGAL_kernel_precondition( ! k.is_degenerate_3_object()(t) ) ;
CGAL_kernel_precondition( ! k.is_degenerate_3_object()(s) ) ;
typedef typename K::Point_3 Point_3;
typename K::Construct_point_on_3 point_on =
k.construct_point_on_3_object();
typename K::Construct_vertex_3 vertex_on =
k.construct_vertex_3_object();
typename K::Orientation_3 orientation =
k.orientation_3_object();
typename K::Intersect_3 intersection =
k.intersect_3_object();
const Point_3 & a = vertex_on(t,0);
const Point_3 & b = vertex_on(t,1);
const Point_3 & c = vertex_on(t,2);
const Point_3 & p = point_on(s,0);
const Point_3 & q = point_on(s,1);
const Orientation abcp = orientation(a,b,c,p);
const Orientation abcq = orientation(a,b,c,q);
switch ( abcp ) {
case POSITIVE:
switch ( abcq ) {
case POSITIVE:
// the segment lies in the positive open halfspaces defined by the
// triangle's supporting plane
return Object();
case NEGATIVE:
// p sees the triangle in counterclockwise order
if ( orientation(p,q,a,b) != POSITIVE
&& orientation(p,q,b,c) != POSITIVE
&& orientation(p,q,c,a) != POSITIVE )
return intersection(s,t.supporting_plane());
else
return Object();
case COPLANAR:
// q belongs to the triangle's supporting plane
// p sees the triangle in counterclockwise order
if ( orientation(p,q,a,b) != POSITIVE
&& orientation(p,q,b,c) != POSITIVE
&& orientation(p,q,c,a) != POSITIVE )
return make_object(q);
else
return Object();
default: // should not happen.
CGAL_kernel_assertion(false);
return Object();
}
case NEGATIVE:
switch ( abcq ) {
case POSITIVE:
// q sees the triangle in counterclockwise order
if ( orientation(q,p,a,b) != POSITIVE
&& orientation(q,p,b,c) != POSITIVE
&& orientation(q,p,c,a) != POSITIVE )
return intersection(s,t.supporting_plane());
else
return Object();
case NEGATIVE:
// the segment lies in the negative open halfspaces defined by the
// triangle's supporting plane
return Object();
case COPLANAR:
// q belongs to the triangle's supporting plane
// p sees the triangle in clockwise order
if ( orientation(q,p,a,b) != POSITIVE
&& orientation(q,p,b,c) != POSITIVE
&& orientation(q,p,c,a) != POSITIVE )
return make_object(q);
else
return Object();
default: // should not happen.
CGAL_kernel_assertion(false);
return Object();
}
case COPLANAR: // p belongs to the triangle's supporting plane
switch ( abcq ) {
case POSITIVE:
// q sees the triangle in counterclockwise order
if ( orientation(q,p,a,b) != POSITIVE
&& orientation(q,p,b,c) != POSITIVE
&& orientation(q,p,c,a) != POSITIVE )
return make_object(p);
else
return Object();
case NEGATIVE:
// q sees the triangle in clockwise order
if ( orientation(p,q,a,b) != POSITIVE
&& orientation(p,q,b,c) != POSITIVE
&& orientation(p,q,c,a) != POSITIVE )
return make_object(p);
else
return Object();
case COPLANAR:
// the segment is coplanar with the triangle's supporting plane
// we test whether the segment intersects the triangle in the common
// supporting plane
return intersection_coplanar(t,s,k);
default: // should not happen.
CGAL_kernel_assertion(false);
return Object();
}
default: // should not happen.
CGAL_kernel_assertion(false);
return Object();
}
}
template <class K>
inline
Object
intersection(const typename K::Segment_3 &s,
const typename K::Triangle_3 &t,
const K & k)
{
return internal::intersection(t,s,k);
}
} // end namespace internal
template <class K>
inline
Object
intersection(const Triangle_3<K> &t, const Segment_3<K> &s)
{
return typename K::Intersect_3()(t, s);
}
template <class K>
inline
Object
intersection(const Segment_3<K> &s, const Triangle_3<K> &t)
{
return typename K::Intersect_3()(t, s);
}
} // end namespace CGAL
#endif // CGAL_TRIANGLE_3_SEGMENT_3_INTERSECTION_H