cgal/Packages/Spatial_searching/include/CGAL/Kd_tree_node.h

282 lines
7.7 KiB
C++

// ======================================================================
//
// Copyright (c) 2002 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------
//
// release :
// release_date :
//
// file : include/CGAL/Kd_tree_node.h
// package : ASPAS
// revision : 2.4
// revision_date : 2003/02/01
// authors : Hans Tangelder (<hanst@cs.uu.nl>)
// maintainer : Hans Tangelder (<hanst@cs.uu.nl>)
// coordinator : Utrecht University
//
// ======================================================================
#ifndef CGAL_KD_TREE_NODE_H
#define CGAL_KD_TREE_NODE_H
#include <CGAL/Kd_tree_traits_point.h>
namespace CGAL {
template < class Traits >
class Kd_tree_node {
public:
enum Node_type {LEAF, INTERNAL, EXTENDED_INTERNAL};
typedef typename Traits::Item Item;
typedef typename Traits::Item_iterator Item_iterator;
typedef typename Traits::NT NT;
typedef typename Traits::Separator Separator;
private:
// node type identifier
Node_type the_node_type;
// private variables for leaf nodes
unsigned int n; // denotes number of items in a leaf node
Item_iterator data; // iterator to data in leaf node
// private variables for internal nodes
Kd_tree_node* lower_ch;
Kd_tree_node* upper_ch;
Separator* sep;
// private variables for extended internal nodes
NT low_val;
NT high_val;
public:
// default constructor
Kd_tree_node() {};
// constructor for leaf node
/*
Kd_tree_node(Point_container<Item>& c) :
n(c.size()), data(new Item*[c.size()]) {
the_node_type=LEAF;
std::copy(c.begin(), c.end(), data);
}; */
Kd_tree_node(Point_container<Item>& c) :
n(c.size()) {
the_node_type=LEAF;
if (n>0) {
data=new Item*[n];
std::copy(c.begin(), c.end(), data);
}
};
// constructor for internal node or extended internal node;
Kd_tree_node(Point_container<Item>& c, Traits& t,
bool use_extension) {
if (use_extension)
the_node_type=EXTENDED_INTERNAL;
else
the_node_type=INTERNAL;
Point_container<Item>
c_low = Point_container<Item>(c.dimension());
Kd_tree_rectangle<NT> bbox(c.bounding_box());
sep = t.split(c, c_low);
int cd = sep->cutting_dimension();
if (use_extension) {
low_val = bbox.min_coord(cd);
high_val = bbox.max_coord(cd);
};
if (c_low.size() > t.bucket_size())
lower_ch =
new Kd_tree_node<Traits>(c_low,t,use_extension);
else
lower_ch = new Kd_tree_node<Traits>(c_low);
if (c.size() > t.bucket_size())
upper_ch =
new Kd_tree_node<Traits>(c,t,use_extension);
else
upper_ch = new Kd_tree_node<Traits>(c);
};
// members for all nodes
inline bool is_leaf() const { return (the_node_type==LEAF);}
// members for leaf nodes only
inline unsigned int size() const { return n;}
inline Item_iterator begin() const {return data;}
inline Item_iterator end() const {return data + n;}
// members for internal node and extended internal node
inline Kd_tree_node* lower() const { return lower_ch; }
inline Kd_tree_node* upper() const { return upper_ch; }
inline Separator* separator() const {return sep; }
// members for extended internal node only
inline NT low_value() const { return low_val; }
inline NT high_value() const { return high_val; }
~Kd_tree_node() {switch (the_node_type) {
case LEAF: {
if (n>0) delete []data;}
break;
case INTERNAL: {
delete sep; delete lower_ch; delete upper_ch;}
break;
case EXTENDED_INTERNAL:
delete sep; delete lower_ch; delete upper_ch;
break;
default:{
std::cerr << "Node corrupted\n";
}
}
};
unsigned int num_items() {
if (is_leaf()) return size();
else
return lower()->num_items() + upper()->num_items();
}
int depth(const int current_max_depth) {
if (is_leaf()) return current_max_depth;
else return
std::max( lower()->depth(current_max_depth + 1),
upper()->depth(current_max_depth + 1));
}
int depth() { return depth(1); }
template <class OutputIterator>
void tree_items(OutputIterator& it) {
if (is_leaf())
{
if (n>0)
for (Item_iterator i=begin(); i != end(); i++)
{*it=**i; ++it;}
}
else {
lower_ch->tree_items(it);
upper_ch->tree_items(it);
}
}
template <class OutputIterator, class R>
void tree_items_in_rectangle(OutputIterator& it,
Iso_rectangle_d<R>& r, Kd_tree_rectangle<NT>* b, NT eps) {
if (is_leaf()) {
if (n>0)
for (Item_iterator i=begin(); i != end(); i++)
if (r.has_on_bounded_side(**i))
{*it=**i; ++it;}
}
else {
// after splitting b denotes the lower part of b
Kd_tree_rectangle<NT>*
b_upper=b->split(sep->cutting_dimension(),
sep->cutting_value());
if (b->is_enclosed_by_dilated_rectangle(r,eps))
lower_ch->tree_items(it);
else
if (b->intersects_eroded_rectangle(r,eps))
lower_ch->tree_items_in_rectangle(it,r,b,eps);
if (b_upper->is_enclosed_by_dilated_rectangle(r,eps))
upper_ch->tree_items(it);
else
if (b_upper->intersects_eroded_rectangle(r,eps))
upper_ch->tree_items_in_rectangle(it,r,b_upper,eps);
delete b_upper;
}
}
template <class OutputIterator>
void tree_items_in_sphere(OutputIterator& it, Item& center,
NT min_squared_radius, NT squared_radius,
NT max_squared_radius, Kd_tree_rectangle<NT>* b) {
if (is_leaf()) {
if (n>0)
for (Item_iterator item_it=begin();
item_it != end(); item_it++)
{// test whether the squared distance
// between **item_it and center
// is at most the squared_radius
NT distance=NT(0);
int dim=center.dimension();
for (int i = 0;
(i < dim) && (distance <= squared_radius); ++i) {
distance +=
(center[i]-(**item_it)[i]) *
(center[i]-(**item_it)[i]);
}
if (distance <= squared_radius)
{*it=**item_it; ++it;}
}
}
else {
// after splitting b denotes the lower part of b
Kd_tree_rectangle<NT>*
b_upper=b->split(sep->cutting_dimension(),
sep->cutting_value());
if // maximal range query encloses b
(b->max_squared_Euclidean_distance_to_point_is_at_most
(center,max_squared_radius))
lower_ch->tree_items(it);
else
if // minimal range query intersects b
(b->min_squared_Euclidean_distance_to_point_is_at_most
(center,min_squared_radius))
lower_ch->tree_items_in_sphere
(it,center,min_squared_radius,squared_radius,max_squared_radius,b);
// the same for b_upper
if // maximal range query encloses upper_b
(b_upper->max_squared_Euclidean_distance_to_point_is_at_most
(center,max_squared_radius))
upper_ch->tree_items(it);
else
if // minimal range query intersects upper_b
(b_upper->min_squared_Euclidean_distance_to_point_is_at_most
(center,min_squared_radius))
upper_ch->tree_items_in_sphere
(it,center,min_squared_radius,squared_radius,
max_squared_radius,b_upper);
delete b_upper;
}
}
};
} // namespace CGAL
#endif // CGAL_KDTREE_NODE_H