mirror of https://github.com/CGAL/cgal
That will suppress the warnings about `CMP0167` (from CMake 3.30): ``` CMake Warning (dev) at cmake/modules/display-third-party-libs-versions.cmake:37 (find_package): Policy CMP0167 is not set: The FindBoost module is removed. Run "cmake --help-policy CMP0167" for policy details. Use the cmake_policy command to set the policy and suppress this warning. ``` |
||
|---|---|---|
| .. | ||
| data | ||
| CMakeLists.txt | ||
| README | ||
| interpolation_2.cpp | ||
| interpolation_vertex_with_info_2.cpp | ||
| linear_interpolation_2.cpp | ||
| linear_interpolation_of_vector_3.cpp | ||
| nn_coordinates_2.cpp | ||
| nn_coordinates_3.cpp | ||
| nn_coordinates_with_info_2.cpp | ||
| rn_coordinates_2.cpp | ||
| sibson_interpolation_2.cpp | ||
| sibson_interpolation_rn_2.cpp | ||
| sibson_interpolation_rn_vertex_with_info_2.cpp | ||
| sibson_interpolation_vertex_with_info_2.cpp | ||
| surface_neighbor_coordinates_3.cpp | ||
README
To compile and run all these examples type : make
To compile and run only some of them type : make name-of_wanted_example
nn_coordinates_2: shows how to compute 2D natural coordinates
given a 2D Delaunay triangulation and a query point.
nn_coordinates_with_info_2: same as above, using a functor to
change the default option and store the coordinates
in the vertices.
nn_coordinates_3: shows how to compute 3D natural coordinates
given a 3D Delaunay triangulation and a query point.
rn_coordinates_2: shows how to compute 2D regular (natural) coordinates
given a 2D Regular triangulation and a (weighted) query point.
linear_interpolation_2: interpolates a linear function using the
linear_interpolation function and 2D natural neighbor coordinates.
sibson_interpolation_2: interpolates a spherical function using the
sibson_gradient_fitting and sibson_c1_interpolation function with
2D natural neighbor coordinates.
surface_neighbor_coordinates_3: shows how to compute natural neighbor
coordinates on surfaces. Example of the sphere.
interpolation_2: this example allows to numerically compare the error
committed by the different interpolation function when interpolating
a predefined function on random points.