cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialToolBox_d.tex

103 lines
4.0 KiB
TeX

\begin{ccRefConcept}{PolynomialToolBox_d}
\ccDefinition
A model of \ccc{PolynomialToolBox_d} is associated to an type
\ccc{Polynomial_d}, representing a multivariate polynomial
\footnote{Univariate polynomials are not excluded by this concept.}.
The number of variables is denoted as the dimension $d$ of the polynomial,
it is arbitrary but fixed for a certain model of this concept.
\ccRefines
\ccc{PolynomialTraits_d}
%\ccConstants
%\ccTypes
\ccHeading{Functors}
In case a functor is not provided it is set to \ccc{CGAL::Null_functor}.
%,e.g., \ccc{Sign_at} if \ccc{Innermost_coefficient_type} is not \ccc{RealEmbeddable}.
\ccSetTwoColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{}
\ccNestedType{Univariate_content}{
In case \ccc{PolynomialTraits_d::Coefficient_type} is {\bf not} a model of
\ccc{UniqueFactorizationDomain}, this is \ccc{CGAL::Null_type}, otherwise this is
a model of \ccc{PolynomialTraits_d::UnivariateContent}.}
%\begin{ccAdvanced}
\ccNestedType{Multivariate_content}{
In case \ccc{PolynomialTraits_d::Innermost_coefficient_type} is {\bf not}
a model of \ccc{UniqueFactorizationDomain}, this is \ccc{CGAL::Null_type},
otherwise this is a model of
\ccc{PolynomialTraits_d::MultivariateContent}.}
%\end{ccAdvanced}
%Manipulation
\ccNestedType{Shift}{ A model of \ccc{PolynomialTraits_d::Shift}.}\ccGlue
\ccNestedType{Negate}{ A model of \ccc{PolynomialTraits_d::Negate}.}\ccGlue
\ccNestedType{Invert}{ A model of \ccc{PolynomialTraits_d::Invert}.}
\ccNestedType{Translate}{ A model of \ccc{PolynomialTraits_d::Translate}.}\ccGlue
\ccNestedType{Translate_homogeneous}
{ A model of \ccc{PolynomialTraits_d::TranslateHomogeneous}.}
\ccNestedType{Scale}{ A model of \ccc{PolynomialTraits_d::Scale}.}\ccGlue
\ccNestedType{Scale_homogeneous}
{ A model of \ccc{PolynomialTraits_d::ScaleHomogeneous}.}
%\begin{ccAdvanced}
%\ccNestedType{Scale_up}{ A model of \ccc{PolynomialTraits_d::ScaleUp, return $p(a*x)$}.}
%\ccNestedType{Scale_down}{ A model of \ccc{PolynomialTraits_d::ScaleDown, return $b^{degree}*p(x/b)$}.}
%\end{ccAdvanced}
%unary operations
\ccNestedType{Make_square_free}
{ A model of \ccc{PolynomialTraits_d::MakeSquareFree}.}\ccGlue
\ccNestedType{Square_free_factorize}
{ In case \ccc{PolynomialTraits::Polynomial_d}
is not a model of \ccc{UniqueFactorizationDomain}, this is of type \ccc{CGAL::Null_type},
otherwise this is a model of \ccc{PolynomialTraits_d::SquareFreeFactorize}.}
%pseudo division
\ccNestedType{Pseudo_division }
{ A model of \ccc{PolynomialTraits_d::Pseudo_division}.}\ccGlue
\ccNestedType{Pseudo_division_remainder}
{ A model of \ccc{PolynomialTraits_d::Pseudo_division_remainder}.}\ccGlue
\ccNestedType{Pseudo_division_quotient }
{ A model of \ccc{PolynomialTraits_d::Pseudo_division_quotient}.}
%utcf
\ccNestedType{Gcd_up_to_constant_factor}
{ A model of \ccc{PolynomialTraits_d::GcdUpToConstantFactor}.}
\ccGlue
\ccNestedType{Integral_division_up_to_constant_factor}
{ A model of \ccc{PolynomialTraits_d::IntegralDivisionUpToConstantFactor}.}
\ccGlue
\ccNestedType{Content_up_to_constant_factor}
{ A model of \ccc{PolynomialTraits_d::ContentUpToConstantFactor}.}
\ccGlue
\ccNestedType{Square_free_factorize_up_to_constant_factor}
{ A model of \ccc{PolynomialTraits_d::SquareFreeFactorizeUpToConstantFactor}.}
%resultant
\ccNestedType{Resultant}{ A model of \ccc{PolynomialTraits_d::Resultant}.}
\ccNestedType{Polynomial_subresultants}
{ A model of \ccc{PolynomialTraits_d::PolynomialSubresultant}.}
\ccNestedType{Principal_subresultants}
{ A model of \ccc{PolynomialTraits_d::PrincipalSubresultant}.}
\ccNestedType{Sturm_habicht_sequence}
{ A model of \ccc{PolynomialTraits_d::SturmHabichtSequence}.}
\ccNestedType{Sturm_habicht_sequence_with_cofactors}
{ A model of \ccc{PolynomialTraits_d::SturmHabichtSequenceWithCofactors}.}
\ccNestedType{Principal_sturm_habicht_sequence}
{ A model of \ccc{PolynomialTraits_d::PrincipalSturmHabichtSequence}.}
% end ccIgnore
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\end{ccRefConcept}