mirror of https://github.com/CGAL/cgal
41 lines
1.2 KiB
TeX
41 lines
1.2 KiB
TeX
\begin{ccRefConcept}{PolynomialTraits_d::IntegralDivisionUpToConstantFactor}
|
|
|
|
\ccDefinition
|
|
|
|
This \ccc{AdaptableBinaryFunction} computes the integral division
|
|
of two polynomials of type \ccc{PolynomialTraits_d::Polynomial_d}
|
|
{\em up to a constant factor (utcf)} .
|
|
|
|
|
|
\ccPrecond $g$ divides $f$ in $Q(R)[x_1,\dots,x_d]$, where $Q(R)$ is the quotient
|
|
field of the base ring $R$, \ccc{PolynomialTraits_d::Innermost_coefficient}.
|
|
|
|
\ccRefines
|
|
|
|
\ccc{AdaptableBinaryFunction}
|
|
|
|
\ccTypes
|
|
|
|
|
|
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
|
|
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue
|
|
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue
|
|
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d second_argument_type;}{}
|
|
|
|
\ccOperations
|
|
|
|
\ccMethod{result_type operator()(first_argument_type f,
|
|
second_argument_type g);}
|
|
{return a denominator-free, constant multiple of $f/g$}
|
|
|
|
|
|
|
|
%\ccHasModels
|
|
|
|
\ccSeeAlso
|
|
|
|
\ccRefIdfierPage{Polynomial_d}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d::GcdUpToConstantFactor}\\
|
|
|
|
\end{ccRefConcept} |