cgal/Polynomial/doc_tex/Polynomial_ref/Polynomial_d.tex

42 lines
1.2 KiB
TeX

\begin{ccRefConcept}{Polynomial_d}
\ccDefinition
A model \ccc{Polynomial_d} possesses a traits class
\ccc{CGAL::Polynomial_traits_d<Polynomial_d>}, which is a model of
\ccc{PolynomialTraits_d}. An \ccc{Polynomial_d} represents a multivariate
polynomial over some basic ring $R$, this type is denoted as the innermost
coefficient type and is accessible through the traits class
\ccc{CGAL::Polynomial_traits_d<Polynomial_d>::Innermost_coefficient}.
\ccRefines
\ccc{Polynomial_d} and \ccc{Innermost_coefficient} are at least a
model of \ccc{IntegralDomainWithoutDiv}. \\
Moreover, the algebraic structure of \ccc{Polynomial} depends on the
algebraic structure of \ccc{Innermost_coefficient}:
\begin{tabular}{|l|l|}
\hline
\ccc{Innermost_coefficient}&\ccc{Polynomial_d}\\
\hline
\ccc{IntegralDomainWithoutDiv}&\ccc{IntegralDomainWithoutDiv}\\
\ccc{IntegralDomain}&\ccc{IntegralDomain}\\
\ccc{UFDomain}&\ccc{UFDomain}\\
\ccc{EuclideanRing}&\ccc{UFDomain}\\
\ccc{Field}&\ccc{UFDomain}\\
\hline
\end{tabular}
Note:The concept \ccc{Polynomial_1} refines \ccc{EuclideanRing} in case
\ccc{Innermost_coefficient} is a \ccc{Field}.
\ccSeeAlso
\ccRefIdfierPage{AlgebraicStructureTraits}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\ccHasModels
\end{ccRefConcept}