cgal/Polynomial/doc/Polynomial/Concepts/PolynomialTraits_d--Transla...

60 lines
1.4 KiB
C++

/*!
\ingroup PkgPolynomialConcepts
\cgalConcept
Given numerator \f$ a\f$ and denominator \f$ b\f$ this `AdaptableFunctor` translates a
`PolynomialTraits_d::Polynomial_d` \f$ p\f$ with respect to one variable by \f$ a/b\f$,
that is, it computes \f$ b^{degree(p)}\cdot p(x+a/b)\f$.
Note that this functor operates on the polynomial in the univariate view, that is,
the polynomial is considered as a univariate homogeneous polynomial in one specific variable.
\cgalRefines `AdaptableFunctor`
\cgalRefines `CopyConstructible`
\cgalRefines `DefaultConstructible`
\sa `Polynomial_d`
\sa `PolynomialTraits_d`
*/
class PolynomialTraits_d::TranslateHomogeneous {
public:
/// \name Types
/// @{
/*!
*/
typedef PolynomialTraits_d::Polynomial_d result_type;
/// @}
/// \name Operations
/// @{
/*!
Returns \f$ b^{degree(p)}\cdot p(x+a/b)\f$,
with respect to the outermost variable.
*/
result_type operator()(PolynomialTraits_d::Polynomial_d p,
PolynomialTraits_d::Innermost_coefficient_type a,
PolynomialTraits_d::Innermost_coefficient_type b);
/*!
Same as first operator but for variable \f$ x_i\f$.
\pre \f$ 0 \leq i < d\f$.
*/
result_type operator()(PolynomialTraits_d::Polynomial_d p,
PolynomialTraits_d::Innermost_coefficient_type a,
PolynomialTraits_d::Innermost_coefficient_type b,
int i);
/// @}
}; /* end PolynomialTraits_d::TranslateHomogeneous */