cgal/STL_Extension/include/CGAL/In_place_list.h

828 lines
24 KiB
C++

// Copyright (c) 2003
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Michael Hoffmann <hoffmann@inf.ethz.ch>
// Lutz Kettner <kettner@mpi-sb.mpg.de>
// Sylvain Pion
#ifndef CGAL_IN_PLACE_LIST_H
#define CGAL_IN_PLACE_LIST_H 1
#include <CGAL/disable_warnings.h>
#include <CGAL/basic.h>
#include <cstddef>
#include <iterator>
#include <functional>
#include <algorithm>
#include <CGAL/memory.h>
namespace CGAL {
// Forward declarations
namespace internal {
template <class T, class Alloc> class In_place_list_iterator;
template <class T, class Alloc> class In_place_list_const_iterator;
}
template <class T, bool managed, class Alloc = CGAL_ALLOCATOR(T)>
class In_place_list;
template < class T >
class In_place_sl_list_base {
public:
T* next_link; // forward pointer
};
template < class T >
class In_place_list_base {
public:
In_place_list_base()
: next_link(nullptr), prev_link(nullptr)
{}
T* next_link; // forward pointer
T* prev_link; // backwards pointer
//friend class internal::In_place_list_iterator<T, Alloc>;
//friend class internal::In_place_list_const_iterator<T, Alloc>;
//friend class In_place_list<T,false, Alloc>;
//friend class In_place_list<T,true, Alloc>;
};
namespace internal {
template <class T, class Alloc>
class In_place_list_iterator {
protected:
T* node;
public:
friend class In_place_list<T,false, Alloc>;
friend class In_place_list<T,true, Alloc>;
typedef In_place_list_iterator<T, Alloc> Self;
typedef In_place_list_base<T> Base;
typedef T value_type;
typedef T* pointer;
typedef T& reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef std::bidirectional_iterator_tag iterator_category;
In_place_list_iterator() : node(0) {}
In_place_list_iterator(T* x) : node(x) {}
bool operator==( const Self& x) const { return node == x.node; }
bool operator!=( const Self& x) const { return node != x.node; }
bool operator==( std::nullptr_t) const { return node == nullptr; }
bool operator!=( std::nullptr_t) const { return node != nullptr; }
bool operator< ( const Self& x) const { return node< x.node; }
bool operator<=( const Self& x) const { return node<= x.node; }
bool operator> ( const Self& x) const { return node> x.node; }
bool operator>=( const Self& x) const { return node>= x.node; }
T& operator*() const { return *node; }
T* operator->() const { return node; }
Self& operator++() {
node = ((Base*)(node))->next_link;
return *this;
}
Self operator++(int) {
Self tmp = *this;
++*this;
return tmp;
}
Self& operator--() {
node = ((Base*)(node))->prev_link;
return *this;
}
Self operator--(int) {
Self tmp = *this;
--*this;
return tmp;
}
friend std::ostream& operator<<(std::ostream& os, const Self& i)
{
return os << i.operator->();
}
};
}
namespace internal {
template <class T, class Alloc>
class In_place_list_const_iterator {
protected:
const T* node; // It's not Ptr. Otherwise traversal won't work.
public:
friend class In_place_list<T,false, Alloc>;
friend class In_place_list<T,true, Alloc>;
typedef In_place_list_const_iterator<T, Alloc> Self;
typedef In_place_list_iterator<T, Alloc> Iterator;
typedef In_place_list_base<T> Base;
typedef T value_type;
typedef const T* pointer;
typedef const T& reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef std::bidirectional_iterator_tag iterator_category;
In_place_list_const_iterator() : node(0) {}
In_place_list_const_iterator(Iterator i) : node(i.operator->()) {}
In_place_list_const_iterator(const T* x) : node(x) {}
bool operator==( const Self& x) const { return node == x.node; }
bool operator!=( const Self& x) const { return node != x.node; }
bool operator==( std::nullptr_t) const { return node == nullptr; }
bool operator!=( std::nullptr_t) const { return node != nullptr; }
bool operator< ( const Self& x) const { return node< x.node; }
bool operator<=( const Self& x) const { return node<= x.node; }
bool operator> ( const Self& x) const { return node> x.node; }
bool operator>=( const Self& x) const { return node>= x.node; }
const T& operator*() const { return *node; }
const T* operator->() const { return node; }
Self& operator++() {
node = ((const Base*)(node))->next_link;
return *this;
}
Self operator++(int) {
Self tmp = *this;
++*this;
return tmp;
}
Self& operator--() {
node = ((const Base*)(node))->prev_link;
return *this;
}
Self operator--(int) {
Self tmp = *this;
--*this;
return tmp;
}
In_place_list_iterator<T,Alloc>
remove_const() const
{
return In_place_list_iterator<T,Alloc>(const_cast<T*>(node));
}
friend std::ostream& operator<<(std::ostream& os, const Self& i)
{
return os << i.operator->();
}
};
template <class T, class Alloc>
std::size_t hash_value(const In_place_list_iterator<T,Alloc>& i)
{
T* ptr = i.operator->();
return reinterpret_cast<std::size_t>(ptr)/ sizeof(T);
}
template <class T, class Alloc>
std::size_t hash_value(const In_place_list_const_iterator<T,Alloc>& i)
{
const T* ptr = i.operator->();
return reinterpret_cast<std::size_t>(ptr)/ sizeof(T);
}
}
template <class T, bool managed, class Alloc>
class In_place_list {
// Bidirectional List Managing Objects in Place
// --------------------------------------------
//
// DEFINITION An object of the class In_place_list<T,bool> is a
// sequence that supports bidirectional iterators and allows constant time
// insert and erase operations anywhere within the sequence. The
// functionality is similar to the `list<T>' in the STL.
//
// The In_place_list<T,bool> manages element items in place. Two
// pointers `T*' are expected in the class. For example the base class
// `In_place_list_base<T>' can be used.
//
// The In_place_list<T,bool> does not copy element items during
// insertion (unless otherwise stated for a function). On removal or
// destruction of the list the element items are not deleted by default.
// The second template parameter `bool' has to be set to `false' in this
// case. If the In_place_list<T,bool> should take the responsibility
// for the stored objects the `bool' parameter could be set to `true', in
// which case the list will delete removed items and will delete all
// remaining items on destruction. In any case, the `destroy()' member
// function deletes all elements.
//
// On purpose, these two possible versions of In_place_list<T,bool>
// are not assignment compatible to avoid confusions between the different
// storage responsibilities.
//
// PARAMETERS
//
// The full classname is `In_place_list<T,bool managed = false, Alloc
// = CGAL_ALLOCATOR(T)>'.
//
// TYPES
public:
typedef Alloc Allocator;
typedef Alloc allocator_type; // STL compliant
// Note: the standard requires the following types to be equivalent
// to T, T*, const T*, T&, const T&, size_t, and ptrdiff_t, respectively.
// So we don't pass these types to the iterators explicitly.
typedef typename std::allocator_traits<Allocator>::value_type value_type;
typedef typename std::allocator_traits<Allocator>::pointer pointer;
typedef typename std::allocator_traits<Allocator>::const_pointer const_pointer;
typedef typename std::allocator_traits<Allocator>::size_type size_type;
typedef typename std::allocator_traits<Allocator>::difference_type difference_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef internal::In_place_list_iterator<T, Alloc> iterator;
typedef internal::In_place_list_const_iterator<T, Alloc> const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef In_place_list<T,managed,Alloc> Self;
protected:
Allocator allocator;
pointer node;
size_type length;
// These are the only places where the allocator gets called.
pointer get_node() {
pointer p = allocator.allocate(1);
#ifdef CGAL_USE_ALLOCATOR_CONSTRUCT_DESTROY
allocator.construct(p, value_type());
#else
new (p) value_type;
#endif
return p;
}
pointer get_node( const T& t) {
pointer p = allocator.allocate(1);
#ifdef CGAL_USE_ALLOCATOR_CONSTRUCT_DESTROY
std::allocator_traits<Allocator>::construct(allocator, p, t);
#else
new (p) value_type(t);
#endif
return p;
}
void put_node( pointer p) {
#ifdef CGAL_USE_ALLOCATOR_CONSTRUCT_DESTROY
std::allocator_traits<Allocator>::destroy(allocator, p);
#else // not CGAL_USE_ALLOCATOR_CONSTRUCT_DESTROY
p->~value_type();
#endif
allocator.deallocate( p, 1);
}
public:
// CREATION
//
// New creation variable is: `l'
explicit In_place_list() : length(0) {
// introduces an empty list.
node = get_node();
(*node).next_link = node;
(*node).prev_link = node;
}
void swap(Self& x) {
std::swap(node, x.node);
std::swap(length, x.length);
}
// ACCESS MEMBER FUNCTIONS
allocator_type get_allocator() const { return allocator; }
iterator begin() { return (*node).next_link; }
const_iterator begin() const { return (*node).next_link; }
iterator end() { return node; }
const_iterator end() const { return node; }
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
bool empty() const { return length == 0; }
size_type size() const { return length; }
size_type max_size() const { return size_type(-1); }
reference front() { return *begin(); }
const_reference front() const { return *begin(); }
reference back() { return *(--end()); }
const_reference back() const { return *(--end()); }
// INSERTION
iterator insert(iterator position, T& x) {
// inserts `t' in front of iterator `pos'. The return value points
// to the inserted item.
x.next_link = position.node;
x.prev_link = (*position.node).prev_link;
(*((*position.node).prev_link)).next_link = &x;
(*position.node).prev_link = &x;
++length;
return &x;
}
iterator insert(T* pos, T& x) {
return insert( iterator(pos), x);
}
void push_front(T& x) { insert(begin(), x); }
// inserts an item in front of list `l'.
void push_back(T& x) { insert(end(), x); }
// inserts an item at the back of list `l'.
void insert(iterator position, size_type n);
// inserts n copies of `T()' in front of iterator `pos'.
void insert(iterator position, size_type n, const T& x);
// inserts n copies of `t' in front of iterator `pos'.
void insert( T* pos, size_type n) { insert( iterator(pos), n); }
void insert( T* pos, size_type n, const T& x) {
insert( iterator(pos), n, x);
}
template <class InputIterator>
void insert(iterator pos, InputIterator first, InputIterator last) {
// inserts the range [`first, last') in front of iterator `pos'.
while (first != last)
insert(pos, *get_node(*first++));
}
template <class InputIterator>
void insert(T* pos, InputIterator first, InputIterator last) {
// inserts the range [`first, last') in front of iterator `pos'.
while (first != last)
insert(pos, *get_node(*first++));
}
void insert(T* pos, const T* first, const T* last) {
insert( iterator(pos), const_iterator(first),
const_iterator(last));
}
// REMOVAL
void erase(iterator i) {
// removes the item from list `l', where `pos' refers to.
CGAL_assertion( length > 0);
(*((*i.node).prev_link)).next_link = (*i.node).next_link;
(*((*i.node).next_link)).prev_link = (*i.node).prev_link;
if (managed)
put_node(i.node);
--length;
}
void erase(T* pos) { erase( iterator( pos)); }
void pop_front() { erase(begin()); }
// removes the first item from list `l'.
void pop_back() {
// removes the last item from list `l'.
iterator tmp = end();
erase(--tmp);
}
void erase(iterator first, iterator last);
// removes the items in the range [`first, last') from list `l'.
void erase(T* first, T* last) {
erase( iterator(first), iterator(last));
}
void clear() { erase( begin(), end()); }
// CREATION (Continued)
explicit In_place_list(size_type n, const T& value = T()) : length(0) {
// introduces a list with n items, all initialized with copies of
// value.
node = get_node();
(*node).next_link = node;
(*node).prev_link = node;
insert(begin(), n, value);
}
template <class InputIterator>
In_place_list( InputIterator first, InputIterator last) : length(0) {
// a list with copies from the range [`first,last').
node = get_node();
(*node).next_link = node;
(*node).prev_link = node;
insert( begin(), first, last);
}
In_place_list(const T* first, const T* last) : length(0) {
// a list with copies from the range [`first,last').
node = get_node();
(*node).next_link = node;
(*node).prev_link = node;
insert(begin(), first, last);
}
In_place_list(const Self& x) : length(0) {
// copy constructor. Each item in `l1' is copied.
node = get_node();
(*node).next_link = node;
(*node).prev_link = node;
insert(begin(), x.begin(), x.end());
}
~In_place_list() noexcept {
try {
erase(begin(), end());
put_node(node);
} catch(...) {}
}
Self& operator=(const Self& x);
void destroy();
template <class InputIterator>
void assign( InputIterator first, InputIterator last) {
erase( begin(), end());
insert( begin(), first, last);
}
void assign( size_type n, const T& t) {
erase( begin(), end());
insert( begin(), n, t);
}
void resize( size_type sz, const T& c = T()) {
if ( sz > size())
insert( end(), sz - size(), c);
else if ( sz < size()) {
iterator i = begin();
while ( sz-- > 0)
++i;
erase( i, end());
} // else do nothing
}
// COMPARISON OPERATIONS
bool operator==( const Self& y) const {
return size() == y.size() && std::equal(begin(), end(), y.begin());
}
bool operator!=( const Self& y) const {
return size() != y.size() || ! std::equal(begin(),end(),y.begin());
}
bool operator<(const Self& y) const {
return std::lexicographical_compare( begin(),end(),
y.begin(),y.end());
}
bool operator> ( const Self& i) const { return i < *this; }
bool operator<=( const Self& i) const { return !(i < *this); }
bool operator>=( const Self& i) const { return !(*this < i); }
// SPECIAL LIST OPERATIONS
protected:
void transfer(iterator position, iterator first, iterator last) {
// move the range [`first, last') before the position.
(*((*last.node).prev_link)).next_link = position.node;
(*((*first.node).prev_link)).next_link = last.node;
(*((*position.node).prev_link)).next_link = first.node;
T* tmp = (*position.node).prev_link;
(*position.node).prev_link = (*last.node).prev_link;
(*last.node).prev_link = (*first.node).prev_link;
(*first.node).prev_link = tmp;
}
public:
void splice(iterator position, Self& x) {
// inserts the list x before position `pos' and x becomes empty.
// It takes constant time. Precondition: `&l != &x'.
if (!x.empty()) {
transfer(position, x.begin(), x.end());
length += x.length;
x.length = 0;
}
}
void splice(T* position, Self& x) {
splice( iterator(position), x);
}
void splice( iterator position, Self& x, iterator i) {
// inserts an element pointed to by i from list x before position
// `pos' and removes the element from x. It takes constant time. i
// is a valid dereferenceable iterator of x. The result is
// unchanged if `pos == i' or `pos == ++i'.
iterator j = i;
if (position == i || position == ++j) return;
transfer(position, i, j);
++length;
--x.length;
}
void splice(T* position, Self& x, T* i) {
splice( iterator(position), x, iterator(i));
}
void splice(iterator pos, Self& x, iterator first, iterator last) {
// inserts elements in the range [`first, last') before position
// `pos' and removes the elements from x. It takes constant time
// if `&x == $l'; otherwise, it takes linear time. [`first,
// last') is a valid range in x. Precondition: `pos' is not in the
// range [`first, last').
if (first != last) {
if (&x != this) {
difference_type n = std::distance(first, last);
x.length -= n;
length += n;
}
transfer(pos, first, last);
}
}
void splice(T* p, Self& x, T* first, T* last) {
splice( iterator(p), x, iterator(first), iterator(last));
}
void remove(const T& value);
// erases all elements e in the list l for which `e == value'.
// It is stable. Precondition: a suitable `operator==' for the
// type T.
void reverse();
// reverses the order of the elements in `l' in linear time.
void unique();
// erases all but the first element from every consecutive group
// of equal elements in the list `l'. Precondition: a suitable
// `operator==' for the type T.
void merge(Self& x);
// merges the list x into the list `l' and x becomes empty. It is
// stable. Precondition: Both lists are sorted in increasing order
// by means of a suitable `operator<` for the type `T`.
template < class StrictWeakOrdering >
void merge(Self& x, StrictWeakOrdering ord)
// merges the list x into the list `l' and x becomes empty.
// It is stable.
// Precondition: Both lists are sorted in increasing order wrt. `ord`.
{
iterator first1 = begin();
iterator last1 = end();
iterator first2 = x.begin();
iterator last2 = x.end();
while (first1 != last1 && first2 != last2)
if (ord(*first2, *first1)) {
iterator next = first2;
transfer(first1, first2, ++next);
first2 = next;
} else
++first1;
if (first2 != last2)
transfer(last1, first2, last2);
length += x.length;
x.length= 0;
}
void sort();
// sorts the list `l' according to the `operator<' in time O(n
// log n) where `n = size()'. It is stable. Precondition: a
// suitable `operator<' for the type T.
template < class StrictWeakOrdering >
void sort(StrictWeakOrdering ord)
// sorts the list `l' according to ord in time O(n log n)
// where `n = size()'. It is stable.
{
if (size() < 2) return;
In_place_list<T,managed,Alloc> carry;
In_place_list<T,managed,Alloc> counter[64];
int fill = 0;
while (!empty()) {
carry.splice(carry.begin(), *this, begin());
int i = 0;
while(i < fill && !counter[i].empty()) {
counter[i].merge(carry, ord);
carry.swap(counter[i++]);
}
carry.swap(counter[i]);
if (i == fill)
++fill;
}
for (int i = 1; i < fill; ++i)
counter[i].merge(counter[i-1], ord);
swap(counter[fill-1]);
}
};
template <class T, bool managed, class Alloc>
void In_place_list<T,managed,Alloc>::
insert(internal::In_place_list_iterator<T, Alloc> position, size_type n) {
while (n--)
insert(position, *get_node());
}
template <class T, bool managed, class Alloc>
void In_place_list<T,managed,Alloc>::
insert(internal::In_place_list_iterator<T, Alloc> position, size_type n, const T& x) {
while (n--)
insert(position, *get_node(x));
}
template <class T, bool managed, class Alloc>
void In_place_list<T,managed,Alloc>::
erase(internal::In_place_list_iterator<T, Alloc> first,
internal::In_place_list_iterator<T, Alloc> last)
{
while (first != last)
erase(first++);
}
template <class T, bool managed, class Alloc>
In_place_list<T,managed,Alloc>&
In_place_list<T,managed,Alloc>::
operator=(const In_place_list<T,managed,Alloc>& x) {
if (this != &x) {
iterator first1 = begin();
iterator last1 = end();
const_iterator first2 = x.begin();
const_iterator last2 = x.end();
while (first1 != last1 && first2 != last2) {
// Save the pointer values before assignment.
// Assignment avoids unneccassary delete's and new's.
T* tmp1 = (*first1).next_link;
T* tmp2 = (*first1).prev_link;
*first1 = *first2++;
(*first1).next_link = tmp1;
(*first1).prev_link = tmp2;
++first1;
}
if (first2 == last2)
erase(first1, last1);
else
insert(last1, first2, last2);
}
return *this;
}
template <class T, bool managed, class Alloc>
void In_place_list<T,managed,Alloc>::
destroy() {
iterator first = begin();
iterator last = end();
while( first != last) {
iterator i = first++;
put_node(i.node);
}
length = 0;
(*node).next_link = node;
(*node).prev_link = node;
}
template <class T, bool managed, class Alloc>
void In_place_list<T,managed,Alloc>::remove(const T& value) {
iterator first = begin();
iterator last = end();
while (first != last) {
iterator next = first;
++next;
if (*first == value)
erase(first);
first = next;
}
}
template <class T, bool managed, class Alloc>
void In_place_list<T,managed,Alloc>::reverse() {
if (size() < 2) return;
for (iterator first = ++begin(); first != end();) {
iterator old = first++;
transfer(begin(), old, first);
}
}
template <class T, bool managed, class Alloc>
void In_place_list<T,managed,Alloc>::unique() {
iterator first = begin();
iterator last = end();
if (first == last) return;
iterator next = first;
while (++next != last) {
if (*first == *next)
erase(next);
else
first = next;
next = first;
}
}
template <class T, bool managed, class Alloc>
void In_place_list<T,managed,Alloc>::merge(In_place_list<T,managed,Alloc>& x) {
iterator first1 = begin();
iterator last1 = end();
iterator first2 = x.begin();
iterator last2 = x.end();
while (first1 != last1 && first2 != last2)
if (*first2 < *first1) {
iterator next = first2;
transfer(first1, first2, ++next);
first2 = next;
} else
++first1;
if (first2 != last2)
transfer(last1, first2, last2);
length += x.length;
x.length= 0;
}
template <class T, bool managed, class Alloc>
void In_place_list<T,managed,Alloc>::sort() {
if (size() < 2) return;
In_place_list<T,managed,Alloc> carry;
In_place_list<T,managed,Alloc> counter[64];
int fill = 0;
while (!empty()) {
carry.splice(carry.begin(), *this, begin());
int i = 0;
while(i < fill && !counter[i].empty()) {
counter[i].merge(carry);
carry.swap(counter[i++]);
}
carry.swap(counter[i]);
if (i == fill)
++fill;
}
for (int i = 1; i < fill; ++i)
counter[i].merge(counter[i-1]);
swap(counter[fill-1]);
}
} //namespace CGAL
namespace std {
#if defined(BOOST_MSVC)
# pragma warning(push)
# pragma warning(disable:4099) // For VC10 it is class hash
#endif
#ifndef CGAL_CFG_NO_STD_HASH
template < class T, class Alloc >
struct hash<CGAL::internal::In_place_list_iterator<T, Alloc> >
: public CGAL::cpp98::unary_function<CGAL::internal::In_place_list_iterator<T, Alloc>, std::size_t> {
std::size_t operator()(const CGAL::internal::In_place_list_iterator<T, Alloc>& i) const
{
return CGAL::internal::hash_value(i);
}
};
template < class T, class Alloc >
struct hash<CGAL::internal::In_place_list_const_iterator<T, Alloc> >
: public CGAL::cpp98::unary_function<CGAL::internal::In_place_list_const_iterator<T, Alloc>, std::size_t> {
std::size_t operator()(const CGAL::internal::In_place_list_const_iterator<T, Alloc>& i) const
{
return CGAL::internal::hash_value(i);
}
};
#endif // CGAL_CFG_NO_STD_HASH
#if defined(BOOST_MSVC)
# pragma warning(pop)
#endif
} // namespace std
#include <CGAL/enable_warnings.h>
#endif // CGAL_IN_PLACE_LIST_H