cgal/Isosurfacing_3/include/CGAL/Default_gradients.h

169 lines
5.4 KiB
C++

// Copyright (c) 2022 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Julian Stahl
#ifndef CGAL_DEFAULT_GRADIENT_H
#define CGAL_DEFAULT_GRADIENT_H
#include <CGAL/license/Isosurfacing_3.h>
#include <CGAL/Bbox_3.h>
#include <CGAL/Cartesian_grid_3.h>
namespace CGAL {
namespace Isosurfacing {
/**
* \ingroup PkgIsosurfacing3Ref
*
* \brief Template class for a gradient that is always zero.
*
* \details This gradient function can be used for Marching Cubes, which does not require a gradient.
*
* \tparam GeomTraits the traits for this gradient.
*/
template <class GeomTraits>
class Zero_gradient {
public:
typedef GeomTraits Geom_traits;
typedef typename Geom_traits::Point_3 Point;
typedef typename Geom_traits::Vector_3 Vector;
public:
Vector operator()(const Point& point) const {
return Vector(0, 0, 0);
}
};
/**
* \ingroup PkgIsosurfacing3Ref
*
* \brief Template class for a gradient that is calculated using finite differences.
*
* \details This gradient function evaluates an implicit value function at six points
* that are a given distance delta away from the queried point.
*
* \tparam GeomTraits the traits for this gradient.
*
* \tparam PointFunction the type of the value function
*/
template <class GeomTraits, typename PointFunction>
class Finite_difference_gradient {
public:
typedef GeomTraits Geom_traits;
typedef typename Geom_traits::FT FT;
typedef typename Geom_traits::Point_3 Point;
typedef typename Geom_traits::Vector_3 Vector;
public:
Finite_difference_gradient(const PointFunction& func, const FT delta = 0.001) : func(func), delta(delta) {}
Vector operator()(const Point& point) const { // TODO
// compute the gradient by sampling the function with finite differences
const Point p0 = point + Vector(delta, 0, 0);
const Point p1 = point - Vector(delta, 0, 0);
const Point p2 = point + Vector(0, delta, 0);
const Point p3 = point - Vector(0, delta, 0);
const Point p4 = point + Vector(0, 0, delta);
const Point p5 = point - Vector(0, 0, delta);
const FT gx = (func(p0) - func(p1)) / (2 * delta);
const FT gy = (func(p2) - func(p3)) / (2 * delta);
const FT gz = (func(p4) - func(p5)) / (2 * delta);
return Vector(gx, gy, gz);
}
private:
const PointFunction func;
FT delta;
};
/**
* \ingroup PkgIsosurfacing3Ref
*
* \brief Template class for a gradient that is stored in a Cartesian_grid_3.
*
* \details The gradient at any point is calculated using trilinear interpolation.
*
* \tparam GeomTraits the traits for this gradient.
*/
template <class GeomTraits>
class Explicit_cartesian_grid_gradient {
public:
typedef GeomTraits Geom_traits;
typedef typename Geom_traits::FT FT;
typedef typename Geom_traits::Point_3 Point;
typedef typename Geom_traits::Vector_3 Vector;
typedef std::shared_ptr<Cartesian_grid_3<Geom_traits>> Grid;
public:
Explicit_cartesian_grid_gradient(const Grid& grid) : grid(grid) {}
Vector operator()(const Point& point) const {
// trilinear interpolation of stored gradients
const Bbox_3& bbox = grid->get_bbox();
const Vector& spacing = grid->get_spacing();
// calculate min index including border case
std::size_t min_i = (point.x() - bbox.xmin()) / spacing.x();
std::size_t min_j = (point.y() - bbox.ymin()) / spacing.y();
std::size_t min_k = (point.z() - bbox.zmin()) / spacing.z();
if (min_i == grid->xdim() - 1) {
min_i--;
}
if (min_j == grid->ydim() - 1) {
min_j--;
}
if (min_k == grid->zdim() - 1) {
min_k--;
}
const FT min_x = min_i * spacing.x() + bbox.xmin();
const FT min_y = min_j * spacing.y() + bbox.ymin();
const FT min_z = min_k * spacing.z() + bbox.zmin();
const FT f_i = (point.x() - min_x) / spacing.x();
const FT f_j = (point.y() - min_y) / spacing.y();
const FT f_k = (point.z() - min_z) / spacing.z();
const Vector g000 = grid->gradient(min_i + 0, min_j + 0, min_k + 0);
const Vector g001 = grid->gradient(min_i + 0, min_j + 0, min_k + 1);
const Vector g010 = grid->gradient(min_i + 0, min_j + 1, min_k + 0);
const Vector g011 = grid->gradient(min_i + 0, min_j + 1, min_k + 1);
const Vector g100 = grid->gradient(min_i + 1, min_j + 0, min_k + 0);
const Vector g101 = grid->gradient(min_i + 1, min_j + 0, min_k + 1);
const Vector g110 = grid->gradient(min_i + 1, min_j + 1, min_k + 0);
const Vector g111 = grid->gradient(min_i + 1, min_j + 1, min_k + 1);
const Vector g0 = g000 * (1 - f_i) * (1 - f_j) * (1 - f_k);
const Vector g1 = g001 * (1 - f_i) * (1 - f_j) * f_k;
const Vector g2 = g010 * (1 - f_i) * f_j * (1 - f_k);
const Vector g3 = g011 * (1 - f_i) * f_j * f_k;
const Vector g4 = g100 * f_i * (1 - f_j) * (1 - f_k);
const Vector g5 = g101 * f_i * (1 - f_j) * f_k;
const Vector g6 = g110 * f_i * f_j * (1 - f_k);
const Vector g7 = g111 * f_i * f_j * f_k;
return g0 + g1 + g2 + g3 + g4 + g5 + g6 + g7;
}
private:
const Grid grid;
};
} // namespace Isosurfacing
} // namespace CGAL
#endif // CGAL_DEFAULT_GRADIENT_H