mirror of https://github.com/CGAL/cgal
169 lines
5.4 KiB
C++
169 lines
5.4 KiB
C++
// Copyright (c) 2022 INRIA Sophia-Antipolis (France).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org).
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
|
|
//
|
|
// Author(s) : Julian Stahl
|
|
|
|
#ifndef CGAL_DEFAULT_GRADIENT_H
|
|
#define CGAL_DEFAULT_GRADIENT_H
|
|
|
|
#include <CGAL/license/Isosurfacing_3.h>
|
|
|
|
#include <CGAL/Bbox_3.h>
|
|
#include <CGAL/Cartesian_grid_3.h>
|
|
|
|
namespace CGAL {
|
|
namespace Isosurfacing {
|
|
|
|
/**
|
|
* \ingroup PkgIsosurfacing3Ref
|
|
*
|
|
* \brief Template class for a gradient that is always zero.
|
|
*
|
|
* \details This gradient function can be used for Marching Cubes, which does not require a gradient.
|
|
*
|
|
* \tparam GeomTraits the traits for this gradient.
|
|
*/
|
|
template <class GeomTraits>
|
|
class Zero_gradient {
|
|
public:
|
|
typedef GeomTraits Geom_traits;
|
|
typedef typename Geom_traits::Point_3 Point;
|
|
typedef typename Geom_traits::Vector_3 Vector;
|
|
|
|
public:
|
|
Vector operator()(const Point& point) const {
|
|
return Vector(0, 0, 0);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* \ingroup PkgIsosurfacing3Ref
|
|
*
|
|
* \brief Template class for a gradient that is calculated using finite differences.
|
|
*
|
|
* \details This gradient function evaluates an implicit value function at six points
|
|
* that are a given distance delta away from the queried point.
|
|
*
|
|
* \tparam GeomTraits the traits for this gradient.
|
|
*
|
|
* \tparam PointFunction the type of the value function
|
|
*/
|
|
template <class GeomTraits, typename PointFunction>
|
|
class Finite_difference_gradient {
|
|
public:
|
|
typedef GeomTraits Geom_traits;
|
|
typedef typename Geom_traits::FT FT;
|
|
typedef typename Geom_traits::Point_3 Point;
|
|
typedef typename Geom_traits::Vector_3 Vector;
|
|
|
|
public:
|
|
Finite_difference_gradient(const PointFunction& func, const FT delta = 0.001) : func(func), delta(delta) {}
|
|
|
|
Vector operator()(const Point& point) const { // TODO
|
|
// compute the gradient by sampling the function with finite differences
|
|
|
|
const Point p0 = point + Vector(delta, 0, 0);
|
|
const Point p1 = point - Vector(delta, 0, 0);
|
|
const Point p2 = point + Vector(0, delta, 0);
|
|
const Point p3 = point - Vector(0, delta, 0);
|
|
const Point p4 = point + Vector(0, 0, delta);
|
|
const Point p5 = point - Vector(0, 0, delta);
|
|
|
|
const FT gx = (func(p0) - func(p1)) / (2 * delta);
|
|
const FT gy = (func(p2) - func(p3)) / (2 * delta);
|
|
const FT gz = (func(p4) - func(p5)) / (2 * delta);
|
|
|
|
return Vector(gx, gy, gz);
|
|
}
|
|
|
|
private:
|
|
const PointFunction func;
|
|
FT delta;
|
|
};
|
|
|
|
/**
|
|
* \ingroup PkgIsosurfacing3Ref
|
|
*
|
|
* \brief Template class for a gradient that is stored in a Cartesian_grid_3.
|
|
*
|
|
* \details The gradient at any point is calculated using trilinear interpolation.
|
|
*
|
|
* \tparam GeomTraits the traits for this gradient.
|
|
*/
|
|
template <class GeomTraits>
|
|
class Explicit_cartesian_grid_gradient {
|
|
public:
|
|
typedef GeomTraits Geom_traits;
|
|
typedef typename Geom_traits::FT FT;
|
|
typedef typename Geom_traits::Point_3 Point;
|
|
typedef typename Geom_traits::Vector_3 Vector;
|
|
|
|
typedef std::shared_ptr<Cartesian_grid_3<Geom_traits>> Grid;
|
|
|
|
public:
|
|
Explicit_cartesian_grid_gradient(const Grid& grid) : grid(grid) {}
|
|
|
|
Vector operator()(const Point& point) const {
|
|
// trilinear interpolation of stored gradients
|
|
|
|
const Bbox_3& bbox = grid->get_bbox();
|
|
const Vector& spacing = grid->get_spacing();
|
|
|
|
// calculate min index including border case
|
|
std::size_t min_i = (point.x() - bbox.xmin()) / spacing.x();
|
|
std::size_t min_j = (point.y() - bbox.ymin()) / spacing.y();
|
|
std::size_t min_k = (point.z() - bbox.zmin()) / spacing.z();
|
|
if (min_i == grid->xdim() - 1) {
|
|
min_i--;
|
|
}
|
|
if (min_j == grid->ydim() - 1) {
|
|
min_j--;
|
|
}
|
|
if (min_k == grid->zdim() - 1) {
|
|
min_k--;
|
|
}
|
|
|
|
const FT min_x = min_i * spacing.x() + bbox.xmin();
|
|
const FT min_y = min_j * spacing.y() + bbox.ymin();
|
|
const FT min_z = min_k * spacing.z() + bbox.zmin();
|
|
|
|
const FT f_i = (point.x() - min_x) / spacing.x();
|
|
const FT f_j = (point.y() - min_y) / spacing.y();
|
|
const FT f_k = (point.z() - min_z) / spacing.z();
|
|
|
|
const Vector g000 = grid->gradient(min_i + 0, min_j + 0, min_k + 0);
|
|
const Vector g001 = grid->gradient(min_i + 0, min_j + 0, min_k + 1);
|
|
const Vector g010 = grid->gradient(min_i + 0, min_j + 1, min_k + 0);
|
|
const Vector g011 = grid->gradient(min_i + 0, min_j + 1, min_k + 1);
|
|
const Vector g100 = grid->gradient(min_i + 1, min_j + 0, min_k + 0);
|
|
const Vector g101 = grid->gradient(min_i + 1, min_j + 0, min_k + 1);
|
|
const Vector g110 = grid->gradient(min_i + 1, min_j + 1, min_k + 0);
|
|
const Vector g111 = grid->gradient(min_i + 1, min_j + 1, min_k + 1);
|
|
|
|
const Vector g0 = g000 * (1 - f_i) * (1 - f_j) * (1 - f_k);
|
|
const Vector g1 = g001 * (1 - f_i) * (1 - f_j) * f_k;
|
|
const Vector g2 = g010 * (1 - f_i) * f_j * (1 - f_k);
|
|
const Vector g3 = g011 * (1 - f_i) * f_j * f_k;
|
|
const Vector g4 = g100 * f_i * (1 - f_j) * (1 - f_k);
|
|
const Vector g5 = g101 * f_i * (1 - f_j) * f_k;
|
|
const Vector g6 = g110 * f_i * f_j * (1 - f_k);
|
|
const Vector g7 = g111 * f_i * f_j * f_k;
|
|
|
|
return g0 + g1 + g2 + g3 + g4 + g5 + g6 + g7;
|
|
}
|
|
|
|
private:
|
|
const Grid grid;
|
|
};
|
|
|
|
} // namespace Isosurfacing
|
|
} // namespace CGAL
|
|
|
|
#endif // CGAL_DEFAULT_GRADIENT_H
|