cgal/Cone_spanners_2/include/CGAL/Cone_spanners_2.h

588 lines
19 KiB
C++

// Copyright (c) 2013-2014 The University of Western Sydney, Australia.
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Authors: Weisheng Si, Quincy Tse
/** @file Cone_spanners_2.h
*
* This header implements the abstract base class Cone_spanners_2,
* from which different kinds of cone-based spanner graphs such as
* Yao graphs and Theta graphs can derive.
*/
#ifndef CGAL_CONE_SPANNERS_2_H
#define CGAL_CONE_SPANNERS_2_H
// if leda::real is used, pls modify the following definition
#define CGAL_USE_CORE 1
#include <CGAL/Cone_spanners_2/_cxx0x_hack.h>
#include <iostream>
#include <cstdlib>
#include <utility>
#include <CGAL/Polynomial.h>
#include <CGAL/number_utils.h>
#include <CGAL/enum.h>
#include <CGAL/Exact_predicates_exact_constructions_kernel_with_sqrt.h>
#include <CGAL/Aff_transformation_2.h>
#include <boost/config.hpp>
#include <boost/graph/adjacency_list.hpp>
namespace CGAL {
/** \ingroup PkgConeBasedSpanners
* @brief An abstract base class for different cone-based spanner graphs with a given set of
* 2D points.
*
* Directed,undirected and bidirectional graphs are supported. For differences among these
* three types of graphs, please see the documentations of BGL.
*
* The constructor of this class will compute the rays that divide the cones. This computation can
* be either inexact by simply dividing Pi by the number of cones (which is quick), or exact by using roots of
* polynomials (entailing number types such as CORE::Expr or LEDA::Real, which are slow).
* The inexact computation is done by the general class definition of Cone_spanners_2 below.
* For exact computation, a partial specialization of this class is defined.
* If the template parameter Kernel is Exact_predicates_exact_constructions_kernel_with_sqrt,
* this partial specialization class will be invoked.
*
* In the construction of Yao graph and Theta graph implemented by this package,
* all predicates and construction functions are from CGAL.
* Based on the previous paragraph, if the kernel Exact_predicates_exact_constructions_kernel_with_sqrt is used,
* the Yao or Theta graph will be constructed exactly, otherwise inexactly.
*
* Also, in the computation of rays, the direction of the first ray can be specified by passing a parameter
* to the constructor, which allows the first ray to start at any direction.
*
*/
template <typename Kernel, typename Directedness, typename EdgeProperty>
class Cone_spanners_2 {
public:
typedef Kernel kernel_type;
typedef Directedness directed_selector;
typedef typename Kernel::Direction_2 Direction_2;
typedef typename Kernel::Point_2 Point_2;
typedef typename Kernel::Line_2 Line_2;
typedef typename Kernel::Aff_transformation_2 Transformation;
typedef boost::adjacency_list<boost::setS,
boost::vecS,
Directedness,
Point_2,
EdgeProperty
> Graph;
/** @brief Constructor.
*
* Constructs a Cone_spanners_2 Graph object.
*
* @param k Number of cones to divide space into
* @param start An iterator pointing to the first point (vertex) in the graph.
* (default: nullptr)
* @param end An iterator pointing to the place that passes the last point.
(default: nullptr)
* @param ray0 A direction denoting one of the rays deviding the
* cones. This allows arbitary rotations of the rays that divide
* the plane.
* (default: positive x-axis)
*/
#ifdef GXX11
template <typename PointInputIterator=Point_2*>
#else
template <typename PointInputIterator>
#endif
Cone_spanners_2 (const unsigned int k,
const PointInputIterator& start=nullptr,
const PointInputIterator& end=nullptr,
const Direction_2& ray0 = Direction_2(1,0)
)
: num_cones(k), g()
{
if (num_cones<2) {
std::cout << "The number of cones should be larger than 1!" << std::endl;
std::exit(1);
}
populate_vertices(start, end);
rays.push_back(ray0);
const double cone_angle = 2*CGAL_PI/num_cones;
double sin_value, cos_value;
for (unsigned int i = 1; i < num_cones; i++) {
sin_value = std::sin(i*cone_angle);
cos_value = std::cos(i*cone_angle);
Direction_2 ray_i = Transformation(cos_value, -sin_value, sin_value, cos_value)(ray0);
rays.push_back(ray_i);
}
}
/** @brief Copy Constructor
* @param x another Cone_spanners_2 object to copy from.
*/
Cone_spanners_2 (const Cone_spanners_2& x) : rays(x.rays), num_cones(x.num_cones), g(x.g) {}
/** @brief Remove all vertices and edges from the graph.
*/
void clear () {
g.clear();
}
/** @brief Inserts a new point into the graph
*
* This inserts the new point into the graph.
*
* @param p The point to add.
*/
void insert (const Point_2& p)
{
g[boost::add_vertex(g)] = p;
}
/** @brief Inserts new points into the graph
*
* This inserts the new points conained between the iterators [start, end)
* into the graph.
*
* @param start The iterator pointing to the first point to be added.
* @param end The iterator pointing to the place just passing the end of the point list.
*
*/
#ifdef GXX11
template <typename PointInputIterator=Point_2*>
#else
template <typename PointInputIterator>
#endif
void insert (PointInputIterator start=nullptr,
const PointInputIterator& end=nullptr)
{
populate_vertices(start, end);
}
/** @brief Inserts all Point_2 in the iterator into the graph as vertices.
*
* @param start The start iterator.
* @param end The end iterator.
*
* @return The updated graph.
*/
template <typename PointInputIterator>
Graph& populate_vertices(const PointInputIterator& start, const PointInputIterator& end)
{
for (PointInputIterator curr = start; curr != end; ++curr)
{
g[boost::add_vertex(g)] = *curr;
}
return this->g;
}
/** @brief Returns the cone_spanner graph constructed.
*
* @return The cone_spanner graph as an boost::adjacency_list.
*/
Graph get_graph() {
return this->g;
}
/** @brief Returns the number of cones configured.
*
* @return the number of cones
*/
const unsigned int& get_num_cones() const {
return num_cones;
}
/** @brief Returns the vector of rays.
*
* @return a vector of Direction_2
*
*/
const std::vector<Direction_2>& get_rays() const {
return rays;
}
/** Casts the cone_spanner graph into a boost::adjacency_list.
*
* @return The cone_spanner graph as an boost::adjacency_list.
*/
operator Graph() const {
return get_graph();
}
/** Function object that orders 2D graph vertex_descriptors based on the "order
* induced by the direction D".
*
* This function object is based on the function CGAL::compare_signed_distance_to_line_2(),
* which orders two Point_2's according to their signed distance to a line.
*
* @see CGAL::compare_signed_distance_to_line_2()
*/
struct vertex_smaller_2
#ifndef GXX11
: public std::binary_function <typename Graph::vertex_descriptor,
typename Graph::vertex_descriptor, bool>
#endif
{
// typedef for C++11 - doesn't hurt to also have for C++98
typedef typename Graph::vertex_descriptor first_argument_type;
typedef typename Graph::vertex_descriptor second_argument_type;
typedef bool result_type;
// constructor
vertex_smaller_2(const Graph& g, const Direction_2& d)
: graph(g), base_line(Point_2(0,0), d) {}
// destructor
~vertex_smaller_2(){}
bool operator() (const typename Graph::vertex_descriptor& p,
const typename Graph::vertex_descriptor& q) const
{
Comparison_result outcome;
outcome = compare_signed_distance_to_line(base_line, graph[p], graph[q]);
if (outcome == SMALLER)
return true;
else {
if (outcome == LARGER)
return false;
}
/* otherwise, outcome == CGAL::EQUAL,
* tie will be broken by a second order according to the ccw90(base_line) direction. */
// define a rotation of counter clockwise 90
Transformation ccw90(0, -1, 1, 0);
// rotate
Line_2 ccw90_line = ccw90(base_line);
outcome = compare_signed_distance_to_line(ccw90_line, graph[p], graph[q]);
if (outcome == SMALLER)
return true;
else
return false;
}
private:
const Graph& graph;
const Line_2 base_line;
};
/** Pure virtual function to be implemented.
* Different cone-based spanners will have different implementations for this function.
*/
virtual Graph& build_edges() = 0;
protected:
/** Store the rays to divide the plane */
std::vector<Direction_2> rays;
/** Store the number of cones. */
const unsigned int num_cones;
/** The boost::adjacency_list data structure to store the graph. */
Graph g;
}; // class Cone_spanners_2
/** @brief A partial specialization of Cone_spanners_2 for exact computation of cones with
* CORE::Expr (or leda::real).
*/
template <typename Directedness, typename EdgeProperty>
class Cone_spanners_2 <Exact_predicates_exact_constructions_kernel_with_sqrt,
Directedness,
EdgeProperty>
{
public:
typedef Exact_predicates_exact_constructions_kernel_with_sqrt Kernel;
typedef Kernel kernel_type;
typedef Directedness directed_selector;
typedef typename Kernel::Direction_2 Direction_2;
typedef typename Kernel::Point_2 Point_2;
typedef typename Kernel::Line_2 Line_2;
typedef typename Kernel::FT FT;
typedef typename Kernel::Aff_transformation_2 Transformation;
typedef boost::adjacency_list<boost::setS,
boost::vecS,
Directedness,
Point_2,
EdgeProperty
> Graph;
/** @brief Constructor.
*
* Constructs a Cone_spanners_2 Graph object.
*
* @param k Number of cones to divide space into
* @param start An iterator pointing to the first point (vertex) in the graph.
* (default: nullptr)
* @param end An iterator pointing to the place that passes the last point.
(default: nullptr)
* @param ray0 A direction denoting one of the rays dividing the
* cones. This allows arbitary rotations of the rays
* that divide the plane.
* (default: positive x-axis)
*/
#ifdef GXX11
template <typename PointInputIterator=Point_2*>
#else
template <typename PointInputIterator>
#endif
Cone_spanners_2 (const unsigned int k,
const PointInputIterator& start=nullptr,
const PointInputIterator& end=nullptr,
const Direction_2& ray0 = Direction_2(1,0)
)
: num_cones(k), g()
{
if (num_cones<2) {
std::cout << "The number of cones should be larger than 1!" << std::endl;
std::exit(1);
}
//std::cout << "Specialization is called!" << std::endl;
populate_vertices(start, end);
// We actually use -x instead of x since CGAL::root_of() will give the k-th
// smallest root but we want the second largest one without counting.
Polynomial<FT> x(CGAL::shift(Polynomial<FT>(-1), 1));
Polynomial<FT> twox(2*x);
Polynomial<FT> a(1), b(x);
for (unsigned int i = 2; i <= num_cones; ++i) {
Polynomial<FT> c = twox*b - a;
a = b;
b = c;
}
a = b - 1;
unsigned int m, i;
if (num_cones % 2 == 0)
m = num_cones/2;
else
m= num_cones/2 + 1;
FT cos_value, sin_value;
Direction_2 ray_i;
for (i = 1; i <= m; i++) {
cos_value = - root_of(i, a.begin(), a.end());
sin_value = sqrt(FT(1) - cos_value*cos_value);
ray_i = Transformation(cos_value, -sin_value, sin_value, cos_value)(ray0);
rays.push_back(ray_i);
}
// add the remaining half number of rays
if (num_cones % 2 == 0) {
for (i = 0; i < m; i++) {
rays.push_back(-rays[i]);
}
}
else {
for (i = 0; i < m-1; i++) {
cos_value = - root_of(m-i, a.begin(), a.end());
sin_value = - sqrt(FT(1) - cos_value*cos_value);
ray_i = Transformation(cos_value, -sin_value, sin_value, cos_value)(ray0);
rays.push_back(ray_i);
}
}
}
/** @brief Copy Constructor
* @param x another Cone_spanners_2 object to copy from.
*/
Cone_spanners_2 (const Cone_spanners_2& x) : rays(x.rays), num_cones(x.num_cones), g(x.g) {}
/** @brief Remove all vertices and edges from the graph.
*/
void clear () {
g.clear();
}
/** @brief Inserts a new point into the graph
*
* This inserts the new point into the graph.
*
* @param p The point to add.
*/
void insert (const Point_2& p)
{
g[boost::add_vertex(g)] = p;
}
/** @brief Inserts new points into the graph
*
* This inserts the new points conained between the iterators [start, end)
* into the graph.
*
* @param start The iterator pointing to the first point to be added.
* @param end The iterator pointing to the place just passing the end of the point list.
*
*/
#ifdef GXX11
template <typename PointInputIterator=Point_2*>
#else
template <typename PointInputIterator>
#endif
void insert (PointInputIterator start=nullptr,
const PointInputIterator& end=nullptr)
{
populate_vertices(start, end);
}
/** @brief Inserts all Point_2 in the iterator into the graph as vertices.
*
* @param start The start iterator.
* @param end The end iterator.
*
* @return The updated graph.
*/
template <typename PointInputIterator>
Graph& populate_vertices(const PointInputIterator& start, const PointInputIterator& end)
{
for (PointInputIterator curr = start; curr != end; ++curr)
{
g[boost::add_vertex(g)] = *curr;
}
return this->g;
}
/** @brief Returns the cone_spanner graph constructed.
*
* @return The cone_spanner graph as an boost::adjacency_list.
*/
Graph get_graph() {
return this->g;
}
/** @brief Returns the number of cones configured.
*
* @return the number of cones
*/
const unsigned int& get_num_cones() const {
return num_cones;
}
/** @brief Returns the vector of rays.
*
* @return a vector of Direction_2
*
*/
const std::vector<Direction_2>& get_rays() const {
return rays;
}
/** Casts the cone_spanner graph into a boost::adjacency_list.
*
* @return The cone_spanner graph as an boost::adjacency_list.
*/
operator Graph() const {
return get_graph();
}
/** Function object that orders 2D graph vertex_descriptors based on the "order
* induced by the direction D".
*
* This function object is based on the function object of directionally_smaller_2
* which orders two Point_2's according to the "order
* induced by the direction D".
*
* @see directionally_smaller_2
*/
struct vertex_smaller_2
#ifndef GXX11
: public std::binary_function <typename Graph::vertex_descriptor,
typename Graph::vertex_descriptor, bool>
#endif
{
// typedef for C++11 - doesn't hurt to also have for C++98
typedef typename Graph::vertex_descriptor first_argument_type;
typedef typename Graph::vertex_descriptor second_argument_type;
typedef bool result_type;
// constructor
vertex_smaller_2(const Graph& g, const Direction_2& d)
: graph(g), base_line(Point_2(0,0), d) {}
// destructor
~vertex_smaller_2(){}
bool operator() (const typename Graph::vertex_descriptor& p,
const typename Graph::vertex_descriptor& q) const
{
Comparison_result outcome;
outcome = compare_signed_distance_to_line(base_line, graph[p], graph[q]);
if (outcome == SMALLER)
return true;
else {
if (outcome == LARGER)
return false;
}
/* otherwise, outcome == CGAL::EQUAL,
* tie will be broken by a second order according to the ccw90(base_line) direction. */
// define a rotation of counter clockwise 90
Transformation ccw90(0, -1, 1, 0);
// rotate
Line_2 ccw90_line = ccw90(base_line);
outcome = compare_signed_distance_to_line(ccw90_line, graph[p], graph[q]);
if (outcome == SMALLER)
return true;
else
return false;
}
private:
const Graph& graph;
const Line_2 base_line;
};
/** Pure virtual function to be implemented.
* Different cone-based spanners will have different implementations for this function.
*/
virtual Graph& build_edges() = 0;
protected:
/** Store rays to divide the plane */
std::vector<Direction_2> rays;
/** Indicate the number of cones. */
const unsigned int num_cones;
/** The boost::adjacency_list data structure to store the graph. */
Graph g;
}; // end of specialization: Cone_spanners_2
/* serialize, to be implemented in future
template < typename Kernel, typename Directedness, typename EdgeProperty >
std::istream& operator>> (std::istream& is, Cone_spanners_2<Kernel, Directedness, EdgeProperty>& cone_spanner);
template < typename Kernel, typename Directedness, typename EdgeProperty >
std::ostream& operator<< (std::ostream& os, const Cone_spanners_2<Kernel, Directedness, EdgeProperty>& cone_spanner);
*/
} // namespace CGAL
#ifdef GXX11
#undef GXX11
#endif
#endif