mirror of https://github.com/CGAL/cgal
1017 lines
32 KiB
C++
1017 lines
32 KiB
C++
// Copyright (c) 2005 Rijksuniversiteit Groningen (Netherlands)
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org); you may redistribute it under
|
|
// the terms of the Q Public License version 1.0.
|
|
// See the file LICENSE.QPL distributed with CGAL.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
//
|
|
//
|
|
// Author(s) : Nico Kruithof <Nico@cs.rug.nl>
|
|
|
|
#ifndef CGAL_TRIANGULATE_MIXED_COMPLEX_3
|
|
#define CGAL_TRIANGULATE_MIXED_COMPLEX_3
|
|
|
|
// #include <CGAL/Unique_hash_map.h>
|
|
#include <CGAL/Compute_anchor_3.h>
|
|
|
|
#include <CGAL/Triangulation_data_structure_3.h>
|
|
#include <CGAL/Triangulated_mixed_complex_observer_3.h>
|
|
#include <CGAL/Triangulation_incremental_builder_3.h>
|
|
// NGHK: move this one to SkinSurfaceTraits
|
|
#include <CGAL/Compute_anchor_3.h>
|
|
|
|
#include <CGAL/Union_find.h>
|
|
|
|
CGAL_BEGIN_NAMESPACE
|
|
|
|
|
|
template <
|
|
class RegularTriangulation_3,
|
|
class TriangulatedMixedComplex_3,
|
|
class TriangulatedMixedComplexObserver_3 =
|
|
Triangulated_mixed_complex_observer_3<TriangulatedMixedComplex_3,
|
|
RegularTriangulation_3> >
|
|
class Mixed_complex_triangulator_3 {
|
|
public:
|
|
typedef typename RegularTriangulation_3::Geom_traits
|
|
Regular_traits;
|
|
typedef typename TriangulatedMixedComplex_3::Geom_traits
|
|
Triangulated_mixed_complex_traits;
|
|
|
|
typedef RegularTriangulation_3 Regular;
|
|
typedef TriangulatedMixedComplex_3 Triangulated_mixed_complex;
|
|
typedef TriangulatedMixedComplexObserver_3
|
|
Triangulated_mixed_complex_observer;
|
|
private:
|
|
typedef typename Regular::Vertex_handle Rt_Vertex_handle;
|
|
typedef typename Regular::Edge Rt_Edge;
|
|
typedef typename Regular::Facet Rt_Facet;
|
|
typedef typename Regular::Cell_handle Rt_Cell_handle;
|
|
|
|
typedef typename Regular::Finite_vertices_iterator Rt_Finite_vertices_iterator;
|
|
typedef typename Regular::Finite_edges_iterator Rt_Finite_edges_iterator;
|
|
typedef typename Regular::Finite_facets_iterator Rt_Finite_facets_iterator;
|
|
typedef typename Regular::All_cells_iterator Rt_All_cells_iterator;
|
|
typedef typename Regular::Finite_cells_iterator Rt_Finite_cells_iterator;
|
|
|
|
typedef typename Regular::Cell_circulator Rt_Cell_circulator;
|
|
|
|
typedef Triangulation_simplex_3<Regular> Rt_Simplex;
|
|
typedef typename Regular::Bare_point Rt_Point;
|
|
typedef typename Regular_traits::FT Rt_FT;
|
|
typedef typename Regular::Weighted_point Rt_Weighted_point;
|
|
|
|
typedef typename Triangulated_mixed_complex::Vertex_handle Tmc_Vertex_handle;
|
|
typedef typename Triangulated_mixed_complex::Edge Tmc_Edge;
|
|
typedef typename Triangulated_mixed_complex::Facet Tmc_Facet;
|
|
typedef typename Triangulated_mixed_complex::Cell_handle Tmc_Cell_handle;
|
|
|
|
typedef typename Triangulated_mixed_complex::Finite_vertices_iterator
|
|
Tmc_Finite_vertices_iterator;
|
|
typedef typename Triangulated_mixed_complex::Finite_edges_iterator
|
|
Tmc_Finite_edges_iterator;
|
|
typedef typename Triangulated_mixed_complex::Finite_facets_iterator
|
|
Tmc_Finite_facets_iterator;
|
|
typedef typename Triangulated_mixed_complex::All_cells_iterator
|
|
Tmc_All_cells_iterator;
|
|
typedef typename Triangulated_mixed_complex::Finite_cells_iterator
|
|
Tmc_Finite_cells_iterator;
|
|
typedef typename Triangulated_mixed_complex::Cell_circulator
|
|
Tmc_Cell_circulator;
|
|
|
|
typedef typename TriangulatedMixedComplex_3::Geom_traits::Point_3 Tmc_Point;
|
|
typedef typename Triangulated_mixed_complex::Geom_traits::RT Tmc_RT;
|
|
|
|
typedef Triangulation_incremental_builder_3<Triangulated_mixed_complex>
|
|
Triangulation_incremental_builder;
|
|
|
|
typedef Compute_anchor_3<Regular> Compute_anchor;
|
|
typedef std::pair<Rt_Simplex,Rt_Simplex> Symb_anchor;
|
|
public:
|
|
|
|
Mixed_complex_triangulator_3(
|
|
Regular const ®ular,
|
|
Rt_FT const &shrink,
|
|
Triangulated_mixed_complex &triangulated_mixed_complex)
|
|
: regular(regular),
|
|
shrink(shrink),
|
|
triangulated_mixed_complex(triangulated_mixed_complex),
|
|
triangulation_incr_builder(triangulated_mixed_complex),
|
|
compute_anchor_obj(regular) {
|
|
|
|
build();
|
|
}
|
|
|
|
Mixed_complex_triangulator_3(
|
|
Regular ®ular,
|
|
Rt_FT const &shrink,
|
|
Triangulated_mixed_complex &triangulated_mixed_complex,
|
|
Triangulated_mixed_complex_observer &observer)
|
|
: regular(regular),
|
|
shrink(shrink),
|
|
triangulated_mixed_complex(triangulated_mixed_complex),
|
|
observer(observer),
|
|
triangulation_incr_builder(triangulated_mixed_complex),
|
|
compute_anchor_obj(regular) {
|
|
|
|
build();
|
|
}
|
|
|
|
|
|
private:
|
|
void build() {
|
|
triangulation_incr_builder.begin_triangulation(3);
|
|
|
|
construct_vertices();
|
|
|
|
construct_0_cells(); // mixed cells corresponding to regular vertices
|
|
construct_1_cells(); // mixed cells corresponding to regular edges
|
|
construct_2_cells(); // mixed cells corresponding to regular facets
|
|
construct_3_cells(); // mixed cells corresponding to regular cells
|
|
|
|
triangulation_incr_builder.end_triangulation();
|
|
}
|
|
|
|
Tmc_Vertex_handle add_vertex(Symb_anchor const &anchor);
|
|
Tmc_Cell_handle add_cell(Tmc_Vertex_handle vh[], int orient, Rt_Simplex s);
|
|
|
|
Tmc_Vertex_handle get_vertex(Rt_Simplex &sDel, Rt_Simplex &sVor);
|
|
|
|
|
|
void construct_anchor_del(Rt_Simplex const &sDel);
|
|
void construct_anchor_vor(Rt_Simplex const &sVor);
|
|
void construct_anchors();
|
|
Rt_Simplex get_anchor_del(Rt_Simplex const &sDel) {
|
|
return *anchor_del.find(map_del[sDel]);
|
|
}
|
|
Rt_Simplex get_anchor_vor(Rt_Simplex const &sVor) {
|
|
return *anchor_vor.find(map_vor[sVor]);
|
|
}
|
|
void construct_vertices();
|
|
|
|
Tmc_Point get_orthocenter(Rt_Simplex const &s);
|
|
Tmc_Point get_anchor(Rt_Simplex const &sDel, Rt_Simplex const &sVor);
|
|
template <class Point>
|
|
Point construct_anchor_point(const Point ¢er_del,
|
|
const Point ¢er_vor) {
|
|
return center_del + shrink*(center_vor - center_del);
|
|
}
|
|
|
|
void construct_0_cells();
|
|
void construct_1_cells();
|
|
void construct_2_cells();
|
|
void construct_3_cells();
|
|
|
|
private:
|
|
Regular const ®ular;
|
|
Rt_FT const &shrink;
|
|
Triangulated_mixed_complex &triangulated_mixed_complex;
|
|
Triangulated_mixed_complex_observer &observer;
|
|
|
|
Triangulation_incremental_builder triangulation_incr_builder;
|
|
|
|
Construct_weighted_circumcenter_3<
|
|
Regular_triangulation_euclidean_traits_3<
|
|
Triangulated_mixed_complex_traits> > orthocenter_obj;
|
|
|
|
Compute_squared_radius_smallest_orthogonal_sphere_3<
|
|
Regular_triangulation_euclidean_traits_3<
|
|
Triangulated_mixed_complex_traits> > orthoweight_obj;
|
|
Compute_anchor_3<Regular> compute_anchor_obj;
|
|
|
|
Weighted_converter_3<
|
|
Cartesian_converter<typename Regular_traits::Bare_point::R,
|
|
Triangulated_mixed_complex_traits > >
|
|
r2t_converter_object;
|
|
|
|
|
|
const static int edge_index[4][4];
|
|
struct Index_c4 { Tmc_Vertex_handle V[4]; };
|
|
struct Index_c6 { Tmc_Vertex_handle V[6]; };
|
|
struct Index_c44 { Tmc_Vertex_handle V[4][4]; };
|
|
struct Index_v {
|
|
Unique_hash_map < Rt_Vertex_handle, Tmc_Vertex_handle > V;
|
|
};
|
|
// Facets on the border of the simplicial complex:
|
|
// name is given by (dim del,dim vor)
|
|
|
|
// index to vertex
|
|
Unique_hash_map < Rt_Cell_handle, Index_c4 > index_03;
|
|
|
|
typedef Union_find<Rt_Simplex> Union_find_anchor;
|
|
typedef typename Union_find_anchor::handle Union_find_anchor_handle;
|
|
typedef typename Union_find_anchor::iterator Union_find_anchor_iterator;
|
|
|
|
Union_find_anchor anchor_del, anchor_vor;
|
|
std::map<Rt_Simplex, Union_find_anchor_handle> map_del, map_vor;
|
|
std::map<Symb_anchor, Tmc_Vertex_handle> anchors;
|
|
};
|
|
|
|
template <
|
|
class RegularTriangulation_3,
|
|
class TriangulatedMixedComplex_3,
|
|
class TriangulatedMixedComplexObserver_3>
|
|
const int Mixed_complex_triangulator_3<
|
|
RegularTriangulation_3,
|
|
TriangulatedMixedComplex_3,
|
|
TriangulatedMixedComplexObserver_3>::
|
|
edge_index[4][4] = {{-1,0,1,2},{0,-1,3,4},{1,3,-1,5},{2,4,5,-1}};
|
|
|
|
|
|
template <
|
|
class RegularTriangulation_3,
|
|
class TriangulatedMixedComplex_3,
|
|
class TriangulatedMixedComplexObserver_3>
|
|
void
|
|
Mixed_complex_triangulator_3<
|
|
RegularTriangulation_3,
|
|
TriangulatedMixedComplex_3,
|
|
TriangulatedMixedComplexObserver_3>::
|
|
construct_anchor_del(Rt_Simplex const &sDel) {
|
|
Rt_Simplex sim = sDel;
|
|
Union_find_anchor_handle handle = anchor_del.make_set(sDel);
|
|
map_del[sDel] = handle;
|
|
CGAL_assertion(sim == sDel);
|
|
|
|
Rt_Simplex s = compute_anchor_obj.anchor_del(sDel);
|
|
CGAL_assertion(sim == sDel);
|
|
if (sDel != s) {
|
|
CGAL_assertion(s != sim);
|
|
anchor_del.unify_sets(handle, map_del[s]);
|
|
}
|
|
|
|
// degenerate simplices:
|
|
if (compute_anchor_obj.is_degenerate()) {
|
|
typename Compute_anchor::Simplex_iterator it;
|
|
for (it = compute_anchor_obj.equivalent_anchors_begin();
|
|
it != compute_anchor_obj.equivalent_anchors_end(); it++) {
|
|
anchor_del.unify_sets(handle, map_del[*it]);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <
|
|
class RegularTriangulation_3,
|
|
class TriangulatedMixedComplex_3,
|
|
class TriangulatedMixedComplexObserver_3>
|
|
void
|
|
Mixed_complex_triangulator_3<
|
|
RegularTriangulation_3,
|
|
TriangulatedMixedComplex_3,
|
|
TriangulatedMixedComplexObserver_3>::
|
|
construct_anchor_vor(Rt_Simplex const &sVor) {
|
|
Union_find_anchor_handle handle = anchor_vor.make_set(sVor);
|
|
map_vor[sVor] = handle;
|
|
|
|
Rt_Simplex s = compute_anchor_obj.anchor_vor(sVor);
|
|
if (sVor != s) {
|
|
anchor_vor.unify_sets(handle, map_vor[s]);
|
|
}
|
|
|
|
// degenerate simplices:
|
|
if (compute_anchor_obj.is_degenerate()) {
|
|
typename Compute_anchor::Simplex_iterator it;
|
|
for (it = compute_anchor_obj.equivalent_anchors_begin();
|
|
it != compute_anchor_obj.equivalent_anchors_end(); it++) {
|
|
typename std::map<Rt_Simplex, Union_find_anchor_handle>::iterator h_it;
|
|
h_it = map_vor.find(*it);
|
|
// Possibly not found for 2 Voronoi vertices with the same center,
|
|
// If the first vertex is inserted and the second is already found.
|
|
if (h_it != map_vor.end()) {
|
|
anchor_vor.unify_sets(handle, (*h_it).second);
|
|
} else {
|
|
CGAL_assertion(s.dimension() == 3);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <
|
|
class RegularTriangulation_3,
|
|
class TriangulatedMixedComplex_3,
|
|
class TriangulatedMixedComplexObserver_3>
|
|
void
|
|
Mixed_complex_triangulator_3<
|
|
RegularTriangulation_3,
|
|
TriangulatedMixedComplex_3,
|
|
TriangulatedMixedComplexObserver_3>::
|
|
construct_anchors() {
|
|
Rt_Finite_vertices_iterator vit;
|
|
Rt_Finite_edges_iterator eit;
|
|
Rt_Finite_facets_iterator fit;
|
|
Rt_Finite_cells_iterator cit;
|
|
Rt_Simplex s;
|
|
|
|
// Compute anchor points:
|
|
for (vit=regular.finite_vertices_begin();
|
|
vit!=regular.finite_vertices_end(); vit++) {
|
|
s = Rt_Simplex(vit);
|
|
construct_anchor_del(s);
|
|
CGAL_assertion(s.dimension() == 0);
|
|
}
|
|
for (eit=regular.finite_edges_begin();
|
|
eit!=regular.finite_edges_end(); eit++) {
|
|
s = Rt_Simplex(*eit);
|
|
construct_anchor_del(s);
|
|
CGAL_assertion(s.dimension() == 1);
|
|
}
|
|
for (fit=regular.finite_facets_begin();
|
|
fit!=regular.finite_facets_end(); fit++) {
|
|
s = Rt_Simplex(*fit);
|
|
construct_anchor_del(s);
|
|
CGAL_assertion(s.dimension() == 2);
|
|
}
|
|
for (cit=regular.finite_cells_begin();
|
|
cit!=regular.finite_cells_end(); cit++) {
|
|
s = Rt_Simplex(cit);
|
|
construct_anchor_del(s);
|
|
construct_anchor_vor(s);
|
|
CGAL_assertion(s.dimension() == 3);
|
|
}
|
|
for (fit=regular.finite_facets_begin();
|
|
fit!=regular.finite_facets_end(); fit++) {
|
|
s = Rt_Simplex(*fit);
|
|
construct_anchor_vor(s);
|
|
CGAL_assertion(s.dimension() == 2);
|
|
}
|
|
for (eit=regular.finite_edges_begin();
|
|
eit!=regular.finite_edges_end(); eit++) {
|
|
s = Rt_Simplex(*eit);
|
|
construct_anchor_vor(s);
|
|
CGAL_assertion(s.dimension() == 1);
|
|
}
|
|
for (vit=regular.finite_vertices_begin();
|
|
vit!=regular.finite_vertices_end(); vit++) {
|
|
s = Rt_Simplex(vit);
|
|
construct_anchor_vor(s);
|
|
CGAL_assertion(s.dimension() == 0);
|
|
}
|
|
}
|
|
|
|
|
|
// Constructs the vertices of the simplicial complex
|
|
template <
|
|
class RegularTriangulation_3,
|
|
class TriangulatedMixedComplex_3,
|
|
class TriangulatedMixedComplexObserver_3>
|
|
void
|
|
Mixed_complex_triangulator_3<
|
|
RegularTriangulation_3,
|
|
TriangulatedMixedComplex_3,
|
|
TriangulatedMixedComplexObserver_3>::
|
|
construct_vertices() {
|
|
Rt_All_cells_iterator acit;
|
|
Rt_Finite_cells_iterator cit;
|
|
Rt_Finite_facets_iterator fit;
|
|
Rt_Finite_edges_iterator eit;
|
|
Rt_Finite_vertices_iterator vit;
|
|
Rt_Cell_circulator ccir, cstart;
|
|
Rt_Vertex_handle v1, v2, v3;
|
|
Rt_Edge e;
|
|
Rt_Cell_handle c1, c2;
|
|
Rt_Simplex sDel, sVor;
|
|
Tmc_Vertex_handle vh;
|
|
|
|
construct_anchors();
|
|
|
|
// anchor dimDel=0, dimVor=3
|
|
for (cit=regular.finite_cells_begin();
|
|
cit!=regular.finite_cells_end(); cit++) {
|
|
sVor = get_anchor_vor(Rt_Simplex(cit));
|
|
for (int i=0; i<4; i++) {
|
|
sDel = get_anchor_del(Rt_Simplex(cit->vertex(i)));
|
|
if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) {
|
|
vh = add_vertex(Symb_anchor(sDel,sVor));
|
|
anchors[Symb_anchor(sDel,sVor)] = vh;
|
|
CGAL_assertion(vh == get_vertex(sDel, sVor));
|
|
}
|
|
}
|
|
}
|
|
|
|
// anchor dimDel=1, dimVor=3
|
|
for (cit=regular.finite_cells_begin(); cit!=regular.finite_cells_end(); cit++) {
|
|
sVor = get_anchor_vor(Rt_Simplex(cit));
|
|
for (int i=0; i<3; i++) {
|
|
for (int j=i+1; j<4; j++) {
|
|
sDel = get_anchor_del(Rt_Simplex(Rt_Edge(cit,i,j)));
|
|
if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) {
|
|
vh = add_vertex(Symb_anchor(sDel,sVor));
|
|
anchors[Symb_anchor(sDel,sVor)] = vh;
|
|
assert(vh == get_vertex(sDel, sVor));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// anchor dimDel=2, dimVor=3 and dimDel=0, dimVor=2
|
|
for (fit=regular.finite_facets_begin(); fit!=regular.finite_facets_end(); fit++) {
|
|
// anchor dimDel=2, dimVor=3
|
|
c1 = fit->first;
|
|
c2 = c1->neighbor(fit->second);
|
|
|
|
sDel = get_anchor_del(*fit);
|
|
if (!regular.is_infinite(c1)) {
|
|
sVor = get_anchor_vor(c1);
|
|
if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) {
|
|
vh = add_vertex(Symb_anchor(sDel,sVor));
|
|
anchors[Symb_anchor(sDel,sVor)] = vh;
|
|
assert(vh == get_vertex(sDel, sVor));
|
|
}
|
|
}
|
|
if (!regular.is_infinite(c2)) {
|
|
sVor = get_anchor_vor(c2);
|
|
if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) {
|
|
vh = add_vertex(Symb_anchor(sDel,sVor));
|
|
anchors[Symb_anchor(sDel,sVor)] = vh;
|
|
assert(vh == get_vertex(sDel, sVor));
|
|
}
|
|
}
|
|
// anchor dimDel=0, dimVor=2
|
|
sVor = get_anchor_vor(*fit);
|
|
for (int i=1; i<4; i++) {
|
|
sDel = get_anchor_del(Rt_Simplex(c1->vertex((fit->second+i)&3)));
|
|
if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) {
|
|
vh = add_vertex(Symb_anchor(sDel,sVor));
|
|
anchors[Symb_anchor(sDel,sVor)] = vh;
|
|
assert(vh == get_vertex(sDel, sVor));
|
|
} else {
|
|
vh = get_vertex(sDel, sVor);
|
|
}
|
|
}
|
|
}
|
|
|
|
// anchor dimDel=0, dimVor=1
|
|
for (eit=regular.finite_edges_begin(); eit!=regular.finite_edges_end(); eit++) {
|
|
sVor = get_anchor_vor(*eit);
|
|
|
|
v1 = eit->first->vertex(eit->second);
|
|
v2 = eit->first->vertex(eit->third);
|
|
sDel = get_anchor_del(v1);
|
|
if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) {
|
|
vh = add_vertex(Symb_anchor(sDel,sVor));
|
|
anchors[Symb_anchor(sDel,sVor)] = vh;
|
|
assert(vh == get_vertex(sDel, sVor));
|
|
}
|
|
|
|
sDel = get_anchor_del(v2);
|
|
if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) {
|
|
vh = add_vertex(Symb_anchor(sDel,sVor));
|
|
anchors[Symb_anchor(sDel,sVor)] = vh;
|
|
assert(vh == get_vertex(sDel, sVor));
|
|
}
|
|
}
|
|
|
|
// anchor dimDel=3, dimVor=3
|
|
for (cit=regular.finite_cells_begin(); cit!=regular.finite_cells_end(); cit++) {
|
|
sDel = get_anchor_del(Rt_Simplex(cit));
|
|
sVor = get_anchor_vor(Rt_Simplex(cit));
|
|
if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) {
|
|
vh = add_vertex(Symb_anchor(sDel,sVor));
|
|
anchors[Symb_anchor(sDel,sVor)] = vh;
|
|
assert(vh == get_vertex(sDel, sVor));
|
|
}
|
|
}
|
|
|
|
|
|
// anchor dimDel=0, dimVor=0
|
|
for (vit=regular.finite_vertices_begin(); vit!=regular.finite_vertices_end(); vit++) {
|
|
sDel = get_anchor_del(Rt_Simplex(vit));
|
|
sVor = get_anchor_vor(Rt_Simplex(vit));
|
|
if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) {
|
|
vh = add_vertex(Symb_anchor(sDel,sVor));
|
|
anchors[Symb_anchor(sDel,sVor)] = vh;
|
|
assert(vh == get_vertex(sDel, sVor));
|
|
}
|
|
}
|
|
|
|
// anchor dimDel=1, dimVor=2
|
|
for (fit=regular.finite_facets_begin(); fit!=regular.finite_facets_end(); fit++) {
|
|
c1 = fit->first;
|
|
c2 = c1->neighbor(fit->second);
|
|
|
|
sVor = get_anchor_vor(Rt_Simplex(*fit));
|
|
for (int i=1; i<3; i++) {
|
|
for (int j=i+1; j<4; j++) {
|
|
e.first = c1;
|
|
e.second = (fit->second+i)&3;
|
|
e.third = (fit->second+j)&3;
|
|
sDel = get_anchor_del(Rt_Simplex(e));
|
|
if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) {
|
|
vh = add_vertex(Symb_anchor(sDel,sVor));
|
|
anchors[Symb_anchor(sDel,sVor)] = vh;
|
|
assert(vh == get_vertex(sDel, sVor));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// anchor dimDel=2, dimVor=2
|
|
for (fit=regular.finite_facets_begin(); fit!=regular.finite_facets_end(); fit++) {
|
|
c1 = fit->first;
|
|
c2 = c1->neighbor(fit->second);
|
|
|
|
sVor = get_anchor_vor(Rt_Simplex(*fit));
|
|
sDel = get_anchor_del(Rt_Simplex(*fit));
|
|
if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) {
|
|
vh = add_vertex(Symb_anchor(sDel,sVor));
|
|
anchors[Symb_anchor(sDel,sVor)] = vh;
|
|
assert(vh == get_vertex(sDel, sVor));
|
|
}
|
|
}
|
|
|
|
// anchor dimDel=1, dimVor=1
|
|
for (eit=regular.finite_edges_begin(); eit!=regular.finite_edges_end(); eit++) {
|
|
v1 = eit->first->vertex(eit->second);
|
|
v2 = eit->first->vertex(eit->third);
|
|
|
|
sVor = get_anchor_vor(Rt_Simplex(*eit));
|
|
sDel = get_anchor_del(Rt_Simplex(*eit));
|
|
|
|
if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) {
|
|
vh = add_vertex(Symb_anchor(sDel,sVor));
|
|
anchors[Symb_anchor(sDel,sVor)] = vh;
|
|
assert(vh == get_vertex(sDel, sVor));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Constructs the cells of the mixed complex corresponding
|
|
// to Regular vertices
|
|
template <
|
|
class RegularTriangulation_3,
|
|
class TriangulatedMixedComplex_3,
|
|
class TriangulatedMixedComplexObserver_3>
|
|
void
|
|
Mixed_complex_triangulator_3<
|
|
RegularTriangulation_3,
|
|
TriangulatedMixedComplex_3,
|
|
TriangulatedMixedComplexObserver_3>::
|
|
construct_0_cells() {
|
|
Rt_Simplex sDel_v, sVor_v, sVor_e, sVor_f, sVor_c;
|
|
Tmc_Vertex_handle vh[4];
|
|
|
|
for (Rt_Finite_vertices_iterator vit=regular.finite_vertices_begin();
|
|
vit!=regular.finite_vertices_end(); vit++) {
|
|
|
|
Rt_Simplex simplex(vit);
|
|
sDel_v = get_anchor_del(Rt_Simplex(vit));
|
|
sVor_v = get_anchor_vor(Rt_Simplex(vit));
|
|
vh[0] = get_vertex(sDel_v,sVor_v);
|
|
|
|
std::list<Rt_Cell_handle> adj_cells;
|
|
typename std::list<Rt_Cell_handle>::iterator adj_cell;
|
|
regular.incident_cells(vit, std::back_inserter(adj_cells));
|
|
|
|
// Construct cells:
|
|
for (adj_cell = adj_cells.begin();
|
|
adj_cell != adj_cells.end();
|
|
adj_cell ++) {
|
|
if (!regular.is_infinite(*adj_cell)) {
|
|
sVor_c = get_anchor_vor(Rt_Simplex(*adj_cell));
|
|
vh[3] = get_vertex(sDel_v,sVor_c);
|
|
int index = (*adj_cell)->index(vit);
|
|
for (int i=1; i<4; i++) {
|
|
sVor_f = get_anchor_vor(
|
|
Rt_Simplex(Rt_Facet(*adj_cell,(index+i)&3)));
|
|
vh[2] = get_vertex(sDel_v,sVor_f);
|
|
|
|
for (int j=1; j<4; j++) {
|
|
if (j!=i) {
|
|
sVor_e = get_anchor_vor(
|
|
Rt_Simplex(Rt_Edge(*adj_cell,index,(index+j)&3)));
|
|
vh[1] = get_vertex(sDel_v,sVor_e);
|
|
if ((vh[0] != vh[1]) && (vh[1] != vh[2]) && (vh[2] != vh[3])) {
|
|
CGAL_assertion(sVor_v != sVor_e);
|
|
CGAL_assertion(sVor_e != sVor_f);
|
|
CGAL_assertion(sVor_f != sVor_c);
|
|
Tmc_Cell_handle ch =
|
|
add_cell(vh,(index + (j==(i%3+1)? 1:0))&1,simplex);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Constructs 1-cells of the mixed complex corresponding to edges
|
|
// of the regular triangulation
|
|
template <
|
|
class RegularTriangulation_3,
|
|
class TriangulatedMixedComplex_3,
|
|
class TriangulatedMixedComplexObserver_3>
|
|
void
|
|
Mixed_complex_triangulator_3<
|
|
RegularTriangulation_3,
|
|
TriangulatedMixedComplex_3,
|
|
TriangulatedMixedComplexObserver_3>::construct_1_cells() {
|
|
Rt_Simplex sDel_v, sDel_e, sVor_e, sVor_f, sVor_c;
|
|
Tmc_Vertex_handle vh[4];
|
|
Rt_Vertex_handle v[2];
|
|
Tmc_Cell_handle ch;
|
|
|
|
for (Rt_Finite_edges_iterator eit=regular.finite_edges_begin();
|
|
eit!=regular.finite_edges_end(); eit++) {
|
|
Rt_Simplex mixed_cell_simplex(*eit);
|
|
sDel_e = get_anchor_del(Rt_Simplex(*eit));
|
|
sVor_e = get_anchor_vor(Rt_Simplex(*eit));
|
|
|
|
v[0] = eit->first->vertex(eit->second);
|
|
v[1] = eit->first->vertex(eit->third);
|
|
|
|
// Construct cells on the side of v[vi]:
|
|
for (int vi=0; vi<2; vi++) {
|
|
sDel_v = get_anchor_del(Rt_Simplex(v[vi]));
|
|
if (!(sDel_v == sDel_e)) {
|
|
Rt_Cell_circulator ccir, cstart;
|
|
ccir = cstart = regular.incident_cells(*eit);
|
|
do {
|
|
if (!regular.is_infinite(ccir)) {
|
|
int index0 = ccir->index(v[vi]);
|
|
int index1 = ccir->index(v[1-vi]);
|
|
|
|
sVor_c = get_anchor_vor(Rt_Simplex(ccir));
|
|
|
|
for (int fi=1; fi<4; fi++) {
|
|
if (((index0+fi)&3) != index1) {
|
|
sVor_f =
|
|
get_anchor_vor(Rt_Simplex(Rt_Facet(ccir,(index0+fi)&3)));
|
|
if ((sVor_c != sVor_f) && (sVor_f != sVor_e)) {
|
|
vh[0] = get_vertex(sDel_v, sVor_e);
|
|
vh[1] = get_vertex(sDel_e, sVor_e);
|
|
vh[2] = get_vertex(sDel_e, sVor_f);
|
|
vh[3] = get_vertex(sDel_e, sVor_c);
|
|
int orient;
|
|
if (((4+index1-index0)&3) == 1) {
|
|
orient = (index1 + (fi==2))&1;
|
|
} else {
|
|
orient = (index1 + (fi==1))&1;
|
|
}
|
|
// vh: dimension are (01,11,12,13)
|
|
ch = add_cell(vh,orient,mixed_cell_simplex);
|
|
|
|
vh[1] = get_vertex(sDel_v, sVor_f);
|
|
// vh: dimension are (01,02,12,13)
|
|
ch = add_cell(vh,1-orient,mixed_cell_simplex);
|
|
|
|
vh[2] = get_vertex(sDel_v, sVor_c);
|
|
// vh: dimension are (01,02,03,13)
|
|
ch = add_cell(vh,orient,mixed_cell_simplex);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ccir ++;
|
|
} while (ccir != cstart);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Constructs 2-cells of the mixed complex corresponding to facets
|
|
// of the regular triangulation
|
|
template <
|
|
class RegularTriangulation_3,
|
|
class TriangulatedMixedComplex_3,
|
|
class TriangulatedMixedComplexObserver_3>
|
|
void
|
|
Mixed_complex_triangulator_3<
|
|
RegularTriangulation_3,
|
|
TriangulatedMixedComplex_3,
|
|
TriangulatedMixedComplexObserver_3>::
|
|
construct_2_cells() {
|
|
Rt_Simplex sDel_v, sDel_e, sDel_f, sVor_f, sVor_c;
|
|
Tmc_Vertex_handle vh[4]; // Implicit function over vLabels is increasing ...
|
|
Rt_Cell_handle rt_ch;
|
|
int index;
|
|
|
|
for (Rt_Finite_facets_iterator fit = regular.finite_facets_begin();
|
|
fit != regular.finite_facets_end();
|
|
fit ++) {
|
|
|
|
rt_ch = fit->first;
|
|
index = fit->second;
|
|
Rt_Simplex simplex(*fit);
|
|
sDel_f = get_anchor_del(Rt_Simplex(*fit));
|
|
sVor_f = get_anchor_vor(Rt_Simplex(*fit));
|
|
|
|
for (int i=0; i<2; i++) { // Do this twice
|
|
if (!regular.is_infinite(rt_ch)) {
|
|
sVor_c = get_anchor_vor(Rt_Simplex(rt_ch));
|
|
|
|
vh[3] = get_vertex(sDel_f, sVor_c);
|
|
Tmc_Vertex_handle vh2 = get_vertex(sDel_f, sVor_f);
|
|
if (vh2 != vh[3]) {
|
|
// Facet and cell do not coincide ..
|
|
for (int vi=1; vi<4; vi++) {
|
|
sDel_v = get_anchor_del(Rt_Simplex(rt_ch->vertex((index+vi)&3)));
|
|
//index_02[rt_ch].V[index][(index+vi)&3];
|
|
vh[0] = get_vertex(sDel_v, sVor_f);
|
|
for (int ei=1; ei<4; ei++) {
|
|
if (vi != ei) {
|
|
vh[2] = vh2;
|
|
int index0 = (index+vi)&3;
|
|
int index1 = (index+ei)&3;
|
|
int fi = (6+index-vi-ei)&3;//6-index-index0-index1;
|
|
sDel_e =
|
|
get_anchor_del(Rt_Simplex(Rt_Edge(rt_ch, index0, index1)));
|
|
vh[1] = get_vertex(sDel_e, sVor_f);
|
|
//index_12[rt_ch].V[index][(6+index-vi-ei)&3];
|
|
if ((vh[0] != vh[1]) && (vh[1] != vh[2])) {
|
|
// index0: v0
|
|
// index1: v1
|
|
// index0+fi&3 == facet
|
|
int orient;
|
|
|
|
if (((4+index1-index0)&3) == 3) {
|
|
orient = (index1 + (((4+index0-fi)&3)==2))&1;
|
|
} else {
|
|
orient = (index1 + (((4+index0-fi)&3)==1))&1;
|
|
}
|
|
|
|
add_cell(vh,orient,simplex);
|
|
|
|
vh[2] = get_vertex(sDel_e, sVor_c);
|
|
add_cell(vh,1-orient,simplex);
|
|
|
|
vh[1] = get_vertex(sDel_v, sVor_c);
|
|
add_cell(vh,orient,simplex);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// swap to the other cell
|
|
Rt_Cell_handle ch_old = rt_ch;
|
|
rt_ch = rt_ch->neighbor(index);
|
|
index = rt_ch->index(ch_old);
|
|
}
|
|
|
|
CGAL_assertion(rt_ch == fit->first);
|
|
CGAL_assertion(index == fit->second);
|
|
}
|
|
}
|
|
|
|
|
|
// Constructs 3-cells of the mixed complex corresponding to cells
|
|
// of the regular triangulation
|
|
template <
|
|
class RegularTriangulation_3,
|
|
class TriangulatedMixedComplex_3,
|
|
class TriangulatedMixedComplexObserver_3>
|
|
void
|
|
Mixed_complex_triangulator_3<
|
|
RegularTriangulation_3,
|
|
TriangulatedMixedComplex_3,
|
|
TriangulatedMixedComplexObserver_3>::
|
|
construct_3_cells() {
|
|
Rt_Simplex sDel_v, sDel_e, sDel_f, sDel_c, sVor_c;
|
|
Tmc_Vertex_handle vh[4];
|
|
Tmc_Cell_handle ch;
|
|
|
|
for (Rt_Finite_cells_iterator cit = regular.finite_cells_begin();
|
|
cit != regular.finite_cells_end();
|
|
cit++) {
|
|
// construct the tetrahedron:
|
|
// C[ch], C[Facet(ch,fi)], C[Edge(ch,ei,vi)], C[ch->vertex(vi)]
|
|
sDel_c = get_anchor_del(Rt_Simplex(cit));
|
|
sVor_c = get_anchor_vor(Rt_Simplex(cit));
|
|
Rt_Simplex simplex = Rt_Simplex(cit);
|
|
vh[0] = get_vertex(sDel_c, sVor_c);
|
|
for (int fi=0; fi<4; fi++) {
|
|
sDel_f = get_anchor_del(Rt_Simplex(Rt_Facet(cit, fi)));
|
|
vh[1] = get_vertex(sDel_f, sVor_c);
|
|
if (vh[0] != vh[1]) {
|
|
for (int vi=1; vi<4; vi++) {
|
|
int index0 = (fi+vi)&3;
|
|
sDel_v = get_anchor_del(Rt_Simplex(cit->vertex(index0)));
|
|
for (int ei=1; ei<4; ei++) {
|
|
int index1 = (fi+ei)&3;
|
|
if (vi != ei) {
|
|
sDel_e = get_anchor_del(Rt_Simplex(Rt_Edge(cit, index0, index1)));
|
|
vh[2] = get_vertex(sDel_e, sVor_c);
|
|
// index_13[cit].V[edge_index[index0][index1]];
|
|
vh[3] = get_vertex(sDel_v, sVor_c);
|
|
// index_03[cit].V[index0];
|
|
if ((vh[1] != vh[2]) && (vh[2] != vh[3])) {
|
|
int orient;
|
|
|
|
if (((4+index1-index0)&3) == 1) {
|
|
orient = (index1 + (vi==2))&1;
|
|
} else {
|
|
orient = (index1 + (vi==3))&1;
|
|
}
|
|
ch = add_cell(vh, orient, simplex);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Adds a vertex to the simplicial complex
|
|
template <
|
|
class RegularTriangulation_3,
|
|
class TriangulatedMixedComplex_3,
|
|
class TriangulatedMixedComplexObserver_3>
|
|
typename Mixed_complex_triangulator_3<
|
|
RegularTriangulation_3,
|
|
TriangulatedMixedComplex_3,
|
|
TriangulatedMixedComplexObserver_3>::Tmc_Vertex_handle
|
|
Mixed_complex_triangulator_3<
|
|
RegularTriangulation_3,
|
|
TriangulatedMixedComplex_3,
|
|
TriangulatedMixedComplexObserver_3>::
|
|
add_vertex (Symb_anchor const &anchor)
|
|
{
|
|
Tmc_Vertex_handle vh;
|
|
vh = triangulation_incr_builder.add_vertex();
|
|
vh->point() = get_anchor(anchor.first, anchor.second);
|
|
observer.after_vertex_insertion(anchor.first, anchor.second, vh);
|
|
|
|
return vh;
|
|
}
|
|
|
|
// Gets a vertex from the simplicial complex based on the anchors
|
|
template <
|
|
class RegularTriangulation_3,
|
|
class TriangulatedMixedComplex_3,
|
|
class TriangulatedMixedComplexObserver_3>
|
|
typename Mixed_complex_triangulator_3<
|
|
RegularTriangulation_3,
|
|
TriangulatedMixedComplex_3,
|
|
TriangulatedMixedComplexObserver_3>::Tmc_Vertex_handle
|
|
Mixed_complex_triangulator_3<
|
|
RegularTriangulation_3,
|
|
TriangulatedMixedComplex_3,
|
|
TriangulatedMixedComplexObserver_3>::get_vertex (
|
|
Rt_Simplex &sDel, Rt_Simplex &sVor)
|
|
{
|
|
Rt_Simplex sDel2 = get_anchor_del(sDel);
|
|
Rt_Simplex sVor2 = get_anchor_vor(sVor);
|
|
CGAL_assertion(sDel == sDel2);
|
|
CGAL_assertion(sVor == sVor2);
|
|
Tmc_Vertex_handle vh = anchors[Symb_anchor(sDel2,sVor2)];
|
|
CGAL_assertion(vh != Tmc_Vertex_handle());
|
|
return vh;
|
|
}
|
|
|
|
// Adds a cell to the simplicial complex
|
|
template <
|
|
class RegularTriangulation_3,
|
|
class TriangulatedMixedComplex_3,
|
|
class TriangulatedMixedComplexObserver_3>
|
|
typename Mixed_complex_triangulator_3<
|
|
RegularTriangulation_3,
|
|
TriangulatedMixedComplex_3,
|
|
TriangulatedMixedComplexObserver_3>::Tmc_Cell_handle
|
|
Mixed_complex_triangulator_3<
|
|
RegularTriangulation_3,
|
|
TriangulatedMixedComplex_3,
|
|
TriangulatedMixedComplexObserver_3>::
|
|
add_cell(Tmc_Vertex_handle vh[], int orient, Rt_Simplex s) {
|
|
assert((orient==0) || (orient==1));
|
|
assert(vh[0] != Tmc_Vertex_handle()); assert(vh[1] != Tmc_Vertex_handle());
|
|
assert(vh[2] != Tmc_Vertex_handle()); assert(vh[3] != Tmc_Vertex_handle());
|
|
assert(vh[1] != vh[2]); assert(vh[1] != vh[3]); assert(vh[1] != vh[4]);
|
|
assert(vh[2] != vh[3]); assert(vh[2] != vh[4]); assert(vh[3] != vh[4]);
|
|
|
|
Tmc_Cell_handle ch;
|
|
|
|
if (orient) {
|
|
if (orientation(vh[0]->point(), vh[1]->point(),
|
|
vh[2]->point(), vh[3]->point()) != POSITIVE) {
|
|
std::cout << orientation(vh[0]->point(), vh[1]->point(),
|
|
vh[2]->point(), vh[3]->point())<< std::endl;
|
|
}
|
|
CGAL_assertion(orientation(
|
|
vh[0]->point(), vh[1]->point(),
|
|
vh[2]->point(), vh[3]->point()) == POSITIVE);
|
|
ch = triangulation_incr_builder.add_cell(vh[0], vh[1], vh[2], vh[3]);
|
|
} else {
|
|
CGAL_assertion(orientation(
|
|
vh[0]->point(), vh[1]->point(),
|
|
vh[3]->point(), vh[2]->point()) == POSITIVE);
|
|
ch = triangulation_incr_builder.add_cell(vh[0], vh[1], vh[3], vh[2]);
|
|
}
|
|
observer.after_cell_insertion(s, ch);
|
|
return ch;
|
|
}
|
|
|
|
template <
|
|
class RegularTriangulation_3,
|
|
class TriangulatedMixedComplex_3,
|
|
class TriangulatedMixedComplexObserver_3>
|
|
typename TriangulatedMixedComplex_3::Geom_traits::Point_3
|
|
Mixed_complex_triangulator_3<
|
|
RegularTriangulation_3,
|
|
TriangulatedMixedComplex_3,
|
|
TriangulatedMixedComplexObserver_3>::
|
|
get_orthocenter(Rt_Simplex const &s) {
|
|
Rt_Vertex_handle vh;
|
|
Rt_Edge e;
|
|
Rt_Facet f;
|
|
Rt_Cell_handle ch;
|
|
|
|
Tmc_Point result;
|
|
switch (s.dimension()) {
|
|
case 0:
|
|
vh=s;
|
|
result = r2t_converter_object(vh->point());
|
|
break;
|
|
case 1:
|
|
e=s;
|
|
result = orthocenter_obj(
|
|
r2t_converter_object(e.first->vertex(e.second)->point()),
|
|
r2t_converter_object(e.first->vertex(e.third)->point()));
|
|
break;
|
|
case 2:
|
|
f=s;
|
|
result = orthocenter_obj(
|
|
r2t_converter_object(
|
|
f.first->vertex((f.second+1)&3)->point()),
|
|
r2t_converter_object(
|
|
f.first->vertex((f.second+2)&3)->point()),
|
|
r2t_converter_object(
|
|
f.first->vertex((f.second+3)&3)->point()));
|
|
break;
|
|
case 3:
|
|
ch=s;
|
|
result = orthocenter_obj(
|
|
r2t_converter_object(ch->vertex(0)->point()),
|
|
r2t_converter_object(ch->vertex(1)->point()),
|
|
r2t_converter_object(ch->vertex(2)->point()),
|
|
r2t_converter_object(ch->vertex(3)->point()));
|
|
break;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template <
|
|
class RegularTriangulation_3,
|
|
class TriangulatedMixedComplex_3,
|
|
class TriangulatedMixedComplexObserver_3>
|
|
typename TriangulatedMixedComplex_3::Geom_traits::Point_3
|
|
Mixed_complex_triangulator_3<
|
|
RegularTriangulation_3,
|
|
TriangulatedMixedComplex_3,
|
|
TriangulatedMixedComplexObserver_3>::
|
|
get_anchor(Rt_Simplex const &sDel, Rt_Simplex const &sVor)
|
|
{
|
|
Tmc_Point dfoc = get_orthocenter(sDel);
|
|
Tmc_Point vfoc = get_orthocenter(sVor);
|
|
|
|
return construct_anchor_point(dfoc, vfoc);
|
|
}
|
|
|
|
template <
|
|
class RegularTriangulation_3,
|
|
class TriangulatedMixedComplex_3,
|
|
class TriangulatedMixedComplexObserver_3>
|
|
void triangulate_mixed_complex_3(
|
|
RegularTriangulation_3 &rt,
|
|
typename RegularTriangulation_3::Geom_traits::FT const & shrink_factor,
|
|
TriangulatedMixedComplex_3 &tmc,
|
|
TriangulatedMixedComplexObserver_3 &observer)
|
|
{
|
|
typedef Mixed_complex_triangulator_3<
|
|
RegularTriangulation_3,
|
|
TriangulatedMixedComplex_3,
|
|
TriangulatedMixedComplexObserver_3> Mixed_complex_triangulator;
|
|
Mixed_complex_triangulator(rt, shrink_factor, tmc, observer);
|
|
}
|
|
|
|
|
|
template <
|
|
class RegularTriangulation_3,
|
|
class TriangulatedMixedComplex_3>
|
|
void triangulate_mixed_complex_3(
|
|
RegularTriangulation_3 const ®ular,
|
|
typename RegularTriangulation_3::Geom_traits::FT const &shrink_factor,
|
|
TriangulatedMixedComplex_3 &triangulated_mixed_complex)
|
|
{
|
|
Triangulated_mixed_complex_observer_3<
|
|
TriangulatedMixedComplex_3, const RegularTriangulation_3>
|
|
observer(shrink_factor);
|
|
triangulate_mixed_complex_3(
|
|
regular, shrink_factor, triangulated_mixed_complex, observer);
|
|
}
|
|
|
|
CGAL_END_NAMESPACE
|
|
|
|
#endif // CGAL_TRIANGULATE_MIXED_COMPLEX_H
|