cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d.tex

199 lines
7.8 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d}
\ccDefinition
A model of \ccc{PolynomialTraits_d} is associated to a type
\ccc{Polynomial_d}.
The type \ccc{Polynomial_d} represents a multivariate polynomial.
The number of variables is denoted as the dimension $d$ of the polynomial,
it is arbitrary but fixed for a certain model of this concept.
Note that univariate polynomials are not excluded by this concept. In this case
$d$ is just set to one.
\ccc{PolynomialTraits_d} provides two different views on the
multivariate polynomial.
\begin{itemize}
\item The recursive view: In this view, the polynomials is considered as
an element of $R[x_0,\dots,x_{d-2}][x_{d-1}]$. That is, the polynomial
is treated as a univariate polynomial over the ring $R[x_0,\dots,x_{d-2}]$.
\item The symmetric or multivariate view: This view is symmetric
with respect to all variables,
considering the polynomials as element of $R [x_0,\dots,x_{d-1}]$.
\end{itemize}
Many functors consider the polynomial as a univariate polynomial in one variable.
By default this is the outermost variable $x_{d-1}$. However, in general it
is possible to select a certain variable.
\ccRefines
\ccc{AlgebraicStructureTraits}
\ccConstants
\ccVariable{static const int d;}{The dimension and the number of variables respectively.}
\ccTypes
\ccNestedType{Polynomial_d}{ Type representing $R[x_0,\dots,x_{d-1}]$.}\ccGlue
\ccNestedType{Coefficient_type }{ Type representing $R[x_0,\dots,x_{d-2}]$.}\ccGlue
\ccNestedType{Innermost_coefficient_type}{ Type representing the base ring $R$.}
\ccNestedType{template <typename T, int d> struct Rebind}
{This nested template class has to define a type \ccc{Other} which is a model
of the concept \ccc{PolynomialTraits_d}, where \ccc{d} is the number of
variables and \ccc{T} the \ccc{Innermost_coefficient_type}.}
\ccHeading{Functors}
In case a functor is not provided it is set to \ccc{CGAL::Null_functor}.
%,e.g., \ccc{Sign_at} if \ccc{Innermost_coefficient_type} is not \ccc{RealEmbeddable}.
\ccSetTwoColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{}
\ccNestedType{Construct_polynomial}
{A model of \ccc{PolynomialTraits_d::ConstructPolynomial}.}
\ccNestedType{Get_coefficient}
{A model of \ccc{PolynomialTraits_d::GetCoefficient}.}
\ccNestedType{Get_innermost_coefficient}
{A model of \ccc{PolynomialTraits_d::GetInnermostCoefficient}.}
\ccNestedType{Swap}
{ A model of \ccc{PolynomialTraits_d::Swap}.}
\ccNestedType{Move}
{ A model of \ccc{PolynomialTraits_d::Move}.}
\ccNestedType{Degree}
{ A model of \ccc{PolynomialTraits_d::Degree}.}
\ccNestedType{Total_degree}
{ A model of \ccc{PolynomialTraits_d::TotalDegree}.}
\ccNestedType{Degree_vector}
{ A model of \ccc{PolynomialTraits_d::DegreeVector}.}
\ccNestedType{Leading_coefficient}
{ A model of \ccc{PolynomialTraits_d::LeadingCoefficient}.}
\ccNestedType{Innermost_leading_coefficient}
{A model of \ccc{PolynomialTraits_d::InnermostLeadingCoefficient}.}
\ccNestedType{Canonicalize}
{ A model of \ccc{PolynomialTraits_d::Canonicalize}.}
\ccNestedType{Differentiate}
{ A model of \ccc{PolynomialTraits_d::Differentiate}.}
%Evaluation
\ccNestedType{Evaluate}
{ A model of \ccc{PolynomialTraits_d::Evaluate}.}
\ccNestedType{Evaluate_homogeneous}
{ A model of \ccc{PolynomialTraits_d::EvaluateHomogeneous}.}
\ccNestedType{Substitute}
{ A model of \ccc{PolynomialTraits_d::Substitute}.}
\ccNestedType{Substitute_homogeneous}
{ A model of \ccc{PolynomialTraits_d::SubstituteHomogeneous}.}
\ccNestedType{Is_zero_at}
{ A model of \ccc{PolynomialTraits_d::IsZeroAt}.}
\ccNestedType{Is_zero_at_homogeneous}
{ A model of \ccc{PolynomialTraits_d::IsZeroAtHomogeneous}.}
\ccNestedType{Sign_at}{
A model of \ccc{PolynomialTraits_d::SignAt}.\\
In case \ccc{Innermost_coefficient_type} is not \ccc{RealEmbeddable} this
is \ccc{CGAL::Null_functor}.}
\ccNestedType{Sign_at_homogeneous}{
A model of \ccc{PolynomialTraits_d::SignAtHomogeneous}.\\
In case \ccc{Innermost_coefficient_type} is not \ccc{RealEmbeddable} this
is \ccc{CGAL::Null_functor}.}
\ccNestedType{Compare}{
A model of \ccc{PolynomialTraits_d::Compare}. \\
In case \ccc{Innermost_coefficient_type} is not \ccc{RealEmbeddable} this
is \ccc{CGAL::Null_functor}.}
\ccNestedType{Univariate_content}{
In case \ccc{PolynomialTraits_d::Coefficient_type} is {\bf not} a model of
\ccc{UniqueFactorizationDomain}, this is \ccc{CGAL::Null_type}, otherwise this is
a model of \ccc{PolynomialTraits_d::UnivariateContent}.}
%\begin{ccAdvanced}
\ccNestedType{Multivariate_content}{
In case \ccc{PolynomialTraits_d::Innermost_coefficient_type} is {\bf not}
a model of \ccc{UniqueFactorizationDomain}, this is \ccc{CGAL::Null_type},
otherwise this is a model of
\ccc{PolynomialTraits_d::MultivariateContent}.}
%\end{ccAdvanced}
%Manipulation
\ccNestedType{Shift}{ A model of \ccc{PolynomialTraits_d::Shift}.}\ccGlue
\ccNestedType{Negate}{ A model of \ccc{PolynomialTraits_d::Negate}.}\ccGlue
\ccNestedType{Invert}{ A model of \ccc{PolynomialTraits_d::Invert}.}
\ccNestedType{Translate}{ A model of \ccc{PolynomialTraits_d::Translate}.}\ccGlue
\ccNestedType{Translate_homogeneous}
{ A model of \ccc{PolynomialTraits_d::TranslateHomogeneous}.}
\ccNestedType{Scale}{ A model of \ccc{PolynomialTraits_d::Scale}.}\ccGlue
\ccNestedType{Scale_homogeneous}
{ A model of \ccc{PolynomialTraits_d::ScaleHomogeneous}.}
%\begin{ccAdvanced}
%\ccNestedType{Scale_up}{ A model of \ccc{PolynomialTraits_d::ScaleUp, return $p(a*x)$}.}
%\ccNestedType{Scale_down}{ A model of \ccc{PolynomialTraits_d::ScaleDown, return $b^{degree}*p(x/b)$}.}
%\end{ccAdvanced}
%unary operations
\ccNestedType{Make_square_free}
{ A model of \ccc{PolynomialTraits_d::MakeSquareFree}.}\ccGlue
\ccNestedType{Square_free_factorize}
{ In case \ccc{PolynomialTraits::Polynomial_d}
is not a model of \ccc{UniqueFactorizationDomain}, this is of type \ccc{CGAL::Null_type},
otherwise this is a model of \ccc{PolynomialTraits_d::SquareFreeFactorize}.}
%pseudo division
\ccNestedType{Pseudo_division }
{ A model of \ccc{PolynomialTraits_d::PseudoDivision}.}\ccGlue
\ccNestedType{Pseudo_division_remainder}
{ A model of \ccc{PolynomialTraits_d::PseudoDivisionRemainder}.}\ccGlue
\ccNestedType{Pseudo_division_quotient }
{ A model of \ccc{PolynomialTraits_d::PseudoDivisionQuotient}.}
%utcf
\ccNestedType{Gcd_up_to_constant_factor}
{ A model of \ccc{PolynomialTraits_d::GcdUpToConstantFactor}.}
\ccGlue
\ccNestedType{Integral_division_up_to_constant_factor}
{ A model of \ccc{PolynomialTraits_d::IntegralDivisionUpToConstantFactor}.}
\ccGlue
\ccNestedType{Content_up_to_constant_factor}
{ A model of \ccc{PolynomialTraits_d::UnivariateContentUpToConstantFactor}.}
\ccGlue
\ccNestedType{Square_free_factorize_up_to_constant_factor}
{ A model of \ccc{PolynomialTraits_d::SquareFreeFactorizeUpToConstantFactor}.}
%resultant
\ccNestedType{Resultant}{ A model of \ccc{PolynomialTraits_d::Resultant}.}
% This was added by Michael Kerber, no review so far
%\ccNestedType{Polynomial_subresultants}
%{ A model of \ccc{PolynomialTraits_d::PolynomialSubresultant}.}
%\ccNestedType{Principal_subresultants}
%{ A model of \ccc{PolynomialTraits_d::PrincipalSubresultant}.}
%\ccNestedType{Sturm_habicht_sequence}
%{ A model of \ccc{PolynomialTraits_d::SturmHabichtSequence}.}
%\ccNestedType{Sturm_habicht_sequence_with_cofactors}
%{ A model of \ccc{PolynomialTraits_d::SturmHabichtSequenceWithCofactors}.}
%\ccNestedType{Principal_sturm_habicht_sequence}
%{ A model of \ccc{PolynomialTraits_d::PrincipalSturmHabichtSequence}.}
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccHasModels
\ccRefIdfierPage{CGAL::Polynomial_traits_d<Polynomial_d>}
\end{ccRefConcept}