cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Canonica...

46 lines
1.3 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d::Canonicalize}
\ccDefinition
This \ccc{AdaptableUnaryFunction} computes a unique representative from the set:
$\{ q | \lambda * q = p\ for\ some\ \lambda \in R \}$,
where $p$ is the given polynomial and $R$ the base of the polynomial ring.
In particular, the computed polynomial has the same zero set as the given one.
In case \ccc{PolynomialTraits::Innermost_coefficient_type} is a model of \ccc{Field},
the computed polynomial is the {\em monic} polynomial,
that is the innermost leading coefficient equals one.
In case \ccc{PolynomialTraits::Innermost_coefficient_type} is a model
of \ccc{UniqueFactorizationDomain}, the gcd over all innermost coefficients of
the computed polynomial is one.
For all other cases the notion of uniqueness is up to the concrete model.
\ccRefines
\ccc{AdaptableUnaryFunction}
\ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{}
\ccOperations
\ccCreationVariable{fo}
\ccMethod{result_type operator()(first_argument_type p);}{
Returns the cononical representative of $p$.}
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\end{ccRefConcept}