mirror of https://github.com/CGAL/cgal
51 lines
1.8 KiB
TeX
51 lines
1.8 KiB
TeX
\begin{ccRefConcept}{PolynomialTraits_d::GcdUpToConstantFactor}
|
|
|
|
\ccDefinition
|
|
|
|
This \ccc{AdaptableBinaryFunction} computes the $gcd$
|
|
{\em up to a constant factor (utcf)} of two polynomials of type
|
|
\ccc{PolynomialTraits_d::Polynomial_d}.
|
|
|
|
In case the base ring $R$, \ccc{PolynomialTraits_d::Innermost_coefficient_type},
|
|
is not a \ccc{UniqueFactorizationDomain} or not a \ccc{Field} the polynomial ring
|
|
$R[x_0,\dots,x_{d-1}]$ ,\ccc{PolynomialTraits_d::Polynomial_d}, may not
|
|
possess greatest common divisor. However, since the $R$ is an integral
|
|
domain one can consider its quotient field $Q(R)$ for which $gcd$s of
|
|
polynomials exist.
|
|
|
|
This functor computes $gcd\_utcf(f,g) = D * gcd(f,g)$,
|
|
for some $D \in R$ such that $gcd\_utcf(f,g) \in R[x_0,\dots,x_{d-1}]$.
|
|
Hence, $gcd\_utcf(f,g)$ may not be a divisor of $f$ and $g$ in $R[x_0,\dots,x_{d-1}]$.
|
|
|
|
\ccRefines
|
|
|
|
\ccc{AdaptableBinaryFunction}
|
|
|
|
\ccTypes
|
|
|
|
|
|
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
|
|
\ccCreationVariable{fo}
|
|
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue
|
|
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue
|
|
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d second_argument_type;}{}
|
|
|
|
\ccOperations
|
|
|
|
\ccMethod{result_type operator()(first_argument_type f,
|
|
second_argument_type g);}
|
|
{Computes a denominator-free, constant multiple of $gcd(f,g)$}
|
|
|
|
|
|
|
|
%\ccHasModels
|
|
|
|
\ccSeeAlso
|
|
|
|
\ccRefIdfierPage{Polynomial_d}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d::IntegralDivisionUpToConstantFactor}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d::UnivariateContentUpToConstantFactor}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d::SquareFreeFactorizeUpToConstantFactor}\\
|
|
|
|
\end{ccRefConcept} |