cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_GcdUpToC...

51 lines
1.8 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d::GcdUpToConstantFactor}
\ccDefinition
This \ccc{AdaptableBinaryFunction} computes the $gcd$
{\em up to a constant factor (utcf)} of two polynomials of type
\ccc{PolynomialTraits_d::Polynomial_d}.
In case the base ring $R$, \ccc{PolynomialTraits_d::Innermost_coefficient_type},
is not a \ccc{UniqueFactorizationDomain} or not a \ccc{Field} the polynomial ring
$R[x_0,\dots,x_{d-1}]$ ,\ccc{PolynomialTraits_d::Polynomial_d}, may not
possess greatest common divisor. However, since the $R$ is an integral
domain one can consider its quotient field $Q(R)$ for which $gcd$s of
polynomials exist.
This functor computes $gcd\_utcf(f,g) = D * gcd(f,g)$,
for some $D \in R$ such that $gcd\_utcf(f,g) \in R[x_0,\dots,x_{d-1}]$.
Hence, $gcd\_utcf(f,g)$ may not be a divisor of $f$ and $g$ in $R[x_0,\dots,x_{d-1}]$.
\ccRefines
\ccc{AdaptableBinaryFunction}
\ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{fo}
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d second_argument_type;}{}
\ccOperations
\ccMethod{result_type operator()(first_argument_type f,
second_argument_type g);}
{Computes a denominator-free, constant multiple of $gcd(f,g)$}
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\ccRefIdfierPage{PolynomialTraits_d::IntegralDivisionUpToConstantFactor}\\
\ccRefIdfierPage{PolynomialTraits_d::UnivariateContentUpToConstantFactor}\\
\ccRefIdfierPage{PolynomialTraits_d::SquareFreeFactorizeUpToConstantFactor}\\
\end{ccRefConcept}