cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Integral...

42 lines
1.2 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d::IntegralDivisionUpToConstantFactor}
\ccDefinition
This \ccc{AdaptableBinaryFunction} computes the integral division
of two polynomials of type \ccc{PolynomialTraits_d::Polynomial_d}
{\em up to a constant factor (utcf)} .
\ccPrecond $g$ divides $f$ in $Q(R)[x_0,\dots,x_{d-1}]$, where $Q(R)$ is the quotient
field of the base ring $R$, \ccc{PolynomialTraits_d::Innermost_coefficient_type}.
\ccRefines
\ccc{AdaptableBinaryFunction}
\ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{fo}
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d second_argument_type;}{}
\ccOperations
\ccMethod{result_type operator()(first_argument_type f,
second_argument_type g);}
{Returns a denominator-free, constant multiple of $f/g$.}
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\ccRefIdfierPage{PolynomialTraits_d::GcdUpToConstantFactor}\\
\end{ccRefConcept}