cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_ScaleHom...

43 lines
1.5 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d::ScaleHomogeneous}
\ccDefinition
This \ccc{AdaptableFunctor} scale a
\ccc{PolynomialTraits_d::Polynomial_d} with respect to one variable.
Note that this functor operates on the polynomial in the univariate view, that is,
the polynomial is considered as a univariate polynomial in one specific variable.
Moreover, the polynomial is considered as a homogeneous polynomial in that variable.
Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}.
\ccRefines
\ccc{AdaptableFunctor}
\ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{fo}
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}
\ccOperations
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
PolynomialTraits_d::Coefficient_type a,
PolynomialTraits_d::Coefficient_type b);}
{ Returns $b^{degree}\cdot p(a/b\cdot x)$,
with respect to the outermost variable. }
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
PolynomialTraits_d::Coefficient_type a,
PolynomialTraits_d::Coefficient_type b,
int i);}
{ Same as first operator but for variable $x_i$.
\ccPrecond $0 \leq i < d$
}
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\end{ccRefConcept}