mirror of https://github.com/CGAL/cgal
44 lines
1.4 KiB
TeX
44 lines
1.4 KiB
TeX
\begin{ccRefConcept}{PolynomialTraits_d::SignAtHomogeneous}
|
|
\ccDefinition
|
|
|
|
This \ccc{AdaptableFunctor} returns the sign of a
|
|
\ccc{PolynomialTraits_d::Polynomial_d} $p$ at a given homogeneous point,
|
|
which is given by an iterator range.
|
|
|
|
The polynomial is interpreted as a homogeneous polynomial in all variables. \\
|
|
For instance the polynomial $p(x_0,x_1) = x_0^2x_1^3+x_1^4$ is interpreted as the homogeneous
|
|
polynomial $p(x_0,x_1,w) = x_0^2x_1^3+x_1^4w^1$.
|
|
|
|
This functor is well defined if \ccc{PolynomialTraits_d::Innermost_coefficient_type} is
|
|
\ccc{RealEmbeddable}.
|
|
|
|
\ccRefines
|
|
\ccc{AdaptableFunctor}
|
|
|
|
\ccTypes
|
|
|
|
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
|
|
\ccCreationVariable{fo}
|
|
\ccTypedef{typedef CGAL::Sign result_type;}{}\ccGlue
|
|
|
|
\ccOperations
|
|
\ccMethod{
|
|
template <class InputIterator>
|
|
result_type operator()(PolynomialTraits_d::Polynomial_d p,
|
|
InputIterator begin,
|
|
InputIterator end );}{
|
|
Returns the sign of $p$ at the given homogeneous point, where $begin$ is
|
|
referring to the innermost variable.
|
|
\ccPrecond{\ccc{std::iterator_traits< InputIterator >::value_type} is
|
|
\ccc{PolynomialTraits_d::Innermost_coefficient_type}.}
|
|
\ccPrecond (end-begin == \ccc{PolynomialTraits_d::d} + 1)
|
|
}
|
|
%\ccHasModels
|
|
|
|
\ccSeeAlso
|
|
|
|
\ccRefIdfierPage{Polynomial_d}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d}\\
|
|
|
|
\end{ccRefConcept}
|