cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SquareFr...

54 lines
1.6 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d::SquareFreeFactorize}
\ccDefinition
This \ccc{Functor} computes a square-free factorization
of a \ccc{PolynomialTraits_d::Polynomial_d}.
A polynomial $p$ is factored into square-free and pairwise coprime non-constant
factors $g_i$ with multiplicities $m_i$ and a constant factor $a$, such that
$p = a \cdot g_1m_1 \cdot ... \cdot g_nm_n$.
The pairs $(g_i,m_i)$ are written into the given output iterator.\\
This functor is well defined if \ccc{PolynomialTraits_d::Polynomial_d} is a
\ccc{UniqueFactorizationDomain}.
\ccRefines
Assignable\\
CopyConstructible\\
DefaultConstructible\\
%\ccTypes
\ccOperations
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{fo}
\ccMethod{template<class OutputIterator>
OutputIterator operator()(PolynomialTraits_d::Polynomial_d p,
OutputIterator it,
PolynomialTraits_d::Innermost_coefficient_type& a);}
{ Computes square-free factorization of $p$.\\
The \ccc{OutputIterator} must allow the value type
\ccc{std::pair<PolynomialTraits_d::Polynomial_d,int>}.
}
\ccMethod{template<class OutputIterator>
OutputIterator operator()(PolynomialTraits_d::Polynomial_d p,
OutputIterator it);}
{ As the first operator, just not computing the factor $a$. }
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\ccRefIdfierPage{PolynomialTraits_d::SquareFreeFactorizeUpToConstantFactor}\\
\ccRefIdfierPage{PolynomialTraits_d::MakeSquareFree}\\
\end{ccRefConcept}