cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Translat...

43 lines
1.3 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d::Translate}
\ccDefinition
This \ccc{AdaptableBinaryFunction} translate a
\ccc{PolynomialTraits_d::Polynomial_d} with respect to one variable.
Note that this functor operates on the polynomial in the univariate view, that is,
the polynomial is considered as a univariate polynomial in one specific variable.
\ccRefines
\ccc{AdaptableBinaryFunction}
\ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{fo}
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}
\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}
\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Coefficient_type second_argument_type;}{}
\ccOperations
\ccMethod{result_type operator()(first_argument_type p,
second_argument_type c);}
{ Returns $p(x+c)$, with respect to the outermost variable. }
\ccMethod{result_type operator()(first_argument_type p,
second_argument_type c,
int i);}
{ Same as first operator but for variable $x_i$.
\ccPrecond $0 \leq i < d$
}
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\end{ccRefConcept}