mirror of https://github.com/CGAL/cgal
257 lines
7.1 KiB
C++
257 lines
7.1 KiB
C++
// Copyright (c) 2002 Utrecht University (The Netherlands).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org); you may redistribute it under
|
|
// the terms of the Q Public License version 1.0.
|
|
// See the file LICENSE.QPL distributed with CGAL.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
//
|
|
//
|
|
// Author(s) : Hans Tangelder (<hanst@cs.uu.nl>)
|
|
|
|
#ifndef CGAL_ORTHOGONAL_K_NEIGHBOR_SEARCH_H
|
|
#define CGAL_ORTHOGONAL_K_NEIGHBOR_SEARCH_H
|
|
|
|
#include <cstring>
|
|
#include <list>
|
|
#include <queue>
|
|
#include <set>
|
|
#include <memory>
|
|
#include <CGAL/Kd_tree_node.h>
|
|
#include <CGAL/Kd_tree.h>
|
|
#include <CGAL/Euclidean_distance.h>
|
|
#include <CGAL/Splitters.h>
|
|
|
|
namespace CGAL {
|
|
|
|
template <class SearchTraits,
|
|
class Distance_= Euclidean_distance<SearchTraits>,
|
|
class Splitter_= Sliding_midpoint<SearchTraits> ,
|
|
class Tree_= Kd_tree<SearchTraits, Splitter_, Tag_true> >
|
|
class Orthogonal_k_neighbor_search {
|
|
|
|
public:
|
|
|
|
typedef Splitter_ Splitter;
|
|
typedef Tree_ Tree;
|
|
typedef Distance_ Distance;
|
|
typedef typename SearchTraits::Point_d Point_d;
|
|
typedef typename Distance::Query_item Query_item;
|
|
|
|
typedef typename SearchTraits::FT FT;
|
|
typedef std::pair<Point_d,FT> Point_with_transformed_distance;
|
|
|
|
typedef typename Tree::Node_handle Node_handle;
|
|
|
|
typedef typename Tree::Point_d_iterator Point_d_iterator;
|
|
|
|
private:
|
|
|
|
// Comparison functor to sort a set of points
|
|
// in increasing or decreasing order (key is distance).
|
|
class Distance_larger
|
|
{
|
|
bool search_nearest;
|
|
|
|
public:
|
|
|
|
Distance_larger(bool search_the_nearest_neighbour)
|
|
: search_nearest(search_the_nearest_neighbour)
|
|
{}
|
|
|
|
bool operator()(const Point_with_transformed_distance& p1,
|
|
const Point_with_transformed_distance& p2) const
|
|
{
|
|
if (search_nearest)
|
|
return (p1.second < p2.second);
|
|
else
|
|
return (p2.second < p1.second);
|
|
}
|
|
};
|
|
|
|
// Set of points, sorted by distance, in increasing or decreasing order.
|
|
typedef std::set<Point_with_transformed_distance, Distance_larger> NN_list;
|
|
|
|
public:
|
|
|
|
typedef typename NN_list::const_iterator iterator;
|
|
|
|
private:
|
|
|
|
int number_of_internal_nodes_visited;
|
|
int number_of_leaf_nodes_visited;
|
|
int number_of_items_visited;
|
|
|
|
bool search_nearest;
|
|
|
|
FT multiplication_factor;
|
|
Query_item query_object;
|
|
int total_item_number;
|
|
FT distance_to_root;
|
|
|
|
NN_list l; // Set of points, sorted by distance
|
|
unsigned int max_k;
|
|
|
|
Distance distance_instance;
|
|
|
|
private:
|
|
|
|
// Test if we should continue searching
|
|
inline bool branch(FT distance)
|
|
{
|
|
if (l.size()<max_k)
|
|
return true;
|
|
else
|
|
if (search_nearest)
|
|
return (distance*multiplication_factor < (--l.end())->second);
|
|
else
|
|
return (distance > l.begin()->second*multiplication_factor);
|
|
}
|
|
|
|
// Try to insert point *I
|
|
void insert(Point_d* I, FT dist)
|
|
{
|
|
// Shall we insert I?
|
|
bool insert;
|
|
if (l.size()<max_k)
|
|
insert=true;
|
|
else if (search_nearest)
|
|
insert = ( dist < (--l.end())->second );
|
|
else
|
|
insert=(dist > (--l.end())->second);
|
|
|
|
if (insert)
|
|
{
|
|
Point_with_transformed_distance NN_Candidate(*I,dist);
|
|
l.insert(NN_Candidate);
|
|
if (l.size() > max_k)
|
|
l.erase(--l.end());
|
|
}
|
|
}
|
|
|
|
|
|
public:
|
|
|
|
iterator begin() const
|
|
{
|
|
return l.begin();
|
|
}
|
|
|
|
iterator end() const
|
|
{
|
|
return l.end();
|
|
}
|
|
|
|
|
|
// constructor
|
|
Orthogonal_k_neighbor_search(Tree& tree, const Query_item& q,
|
|
unsigned int k=1, FT Eps=FT(0.0), bool Search_nearest=true, const Distance& d=Distance())
|
|
: number_of_internal_nodes_visited(0), number_of_leaf_nodes_visited(0), number_of_items_visited(0),
|
|
search_nearest(Search_nearest), multiplication_factor(d.transformed_distance(1.0+Eps)), query_object(q),
|
|
total_item_number(tree.size()), l(Distance_larger(Search_nearest)), max_k(k), distance_instance(d)
|
|
|
|
{
|
|
if (search_nearest)
|
|
distance_to_root = d.min_distance_to_rectangle(q, tree.bounding_box());
|
|
else
|
|
distance_to_root = d.max_distance_to_rectangle(q, tree.bounding_box());
|
|
|
|
compute_neighbors_orthogonally(tree.root(), distance_to_root);
|
|
|
|
}
|
|
|
|
|
|
// Print statistics of the k_neighbor search process.
|
|
std::ostream& statistics (std::ostream& s)
|
|
{
|
|
s << "K_Neighbor search statistics:" << std::endl;
|
|
s << "Number of internal nodes visited:"
|
|
<< number_of_internal_nodes_visited << std::endl;
|
|
s << "Number of leaf nodes visited:"
|
|
<< number_of_leaf_nodes_visited << std::endl;
|
|
s << "Number of items visited:"
|
|
<< number_of_items_visited << std::endl;
|
|
return s;
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
void compute_neighbors_orthogonally(Node_handle N, FT rd)
|
|
{
|
|
typename SearchTraits::Construct_cartesian_const_iterator_d construct_it;
|
|
typename SearchTraits::Cartesian_const_iterator_d query_object_it = construct_it(query_object);
|
|
if (!(N->is_leaf()))
|
|
{
|
|
number_of_internal_nodes_visited++;
|
|
int new_cut_dim=N->cutting_dimension();
|
|
FT old_off, new_rd;
|
|
FT new_off = *(query_object_it + new_cut_dim) - N->cutting_value();
|
|
if ( ((new_off < FT(0.0)) && (search_nearest)) ||
|
|
((new_off >= FT(0.0)) && (!search_nearest)) )
|
|
{
|
|
compute_neighbors_orthogonally(N->lower(),rd);
|
|
if (search_nearest) {
|
|
old_off= *(query_object_it + new_cut_dim) - N->low_value();
|
|
if (old_off>FT(0.0))
|
|
old_off=FT(0.0);
|
|
}
|
|
else {
|
|
old_off= *(query_object_it + new_cut_dim) - N->high_value();
|
|
if (old_off<FT(0.0))
|
|
old_off=FT(0.0);
|
|
}
|
|
new_rd = distance_instance.new_distance(rd,old_off,new_off,new_cut_dim);
|
|
if (branch(new_rd))
|
|
compute_neighbors_orthogonally(N->upper(), new_rd);
|
|
}
|
|
else // compute new distance
|
|
{
|
|
compute_neighbors_orthogonally(N->upper(),rd);
|
|
if (search_nearest) {
|
|
old_off= N->high_value() - *(query_object_it + new_cut_dim);
|
|
if (old_off>FT(0.0))
|
|
old_off=FT(0.0);
|
|
}
|
|
else {
|
|
old_off= N->low_value() - *(query_object_it + new_cut_dim);
|
|
if (old_off<FT(0.0))
|
|
old_off=FT(0.0);
|
|
}
|
|
new_rd = distance_instance. new_distance(rd,old_off,new_off,new_cut_dim);
|
|
if (branch(new_rd))
|
|
compute_neighbors_orthogonally(N->lower(), new_rd);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// n is a leaf
|
|
number_of_leaf_nodes_visited++;
|
|
if (N->size() > 0)
|
|
{
|
|
for (Point_d_iterator it=N->begin(); it != N->end(); it++)
|
|
{
|
|
number_of_items_visited++;
|
|
FT distance_to_query_object=
|
|
distance_instance.transformed_distance(query_object,**it);
|
|
insert(*it,distance_to_query_object);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}; // class
|
|
|
|
} // namespace CGAL
|
|
|
|
#endif // CGAL_ORTHOGONAL_K_NEIGHBOR_SEARCH_H
|