cgal/Visibility_2/include/CGAL/Simple_polygon_visibility_2.h

601 lines
20 KiB
C++

// Copyright (c) 2013 Technical University Braunschweig (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s): Francisc Bungiu <fbungiu@gmail.com>
// Michael Hemmer <michael.hemmer@cgal.org>
#ifndef CGAL_SIMPLE_POLYGON_VISIBILITY_2_H
#define CGAL_SIMPLE_POLYGON_VISIBILITY_2_H
#include <CGAL/Arrangement_2.h>
#include <CGAL/tags.h>
#include <CGAL/enum.h>
#include <CGAL/Visibility_2/visibility_utils.h>
#include <stack>
namespace CGAL {
template<class Arrangement_2, class RegularizationTag>
class Simple_polygon_visibility_2 {
public:
// Currently only consider with same type for both
typedef Arrangement_2 Input_arrangement_2;
typedef Arrangement_2 Output_arrangement_2;
typedef typename Arrangement_2::Geometry_traits_2 Geometry_traits_2;
typedef typename Arrangement_2::Halfedge_const_handle
Halfedge_const_handle;
typedef typename Arrangement_2::Halfedge_handle Halfedge_handle;
typedef typename Arrangement_2::Ccb_halfedge_const_circulator
Ccb_halfedge_const_circulator;
typedef typename Arrangement_2::Face_const_handle Face_const_handle;
typedef typename Arrangement_2::Face_handle Face_handle;
typedef typename Geometry_traits_2::Point_2 Point_2;
typedef typename Geometry_traits_2::Ray_2 Ray_2;
typedef typename Geometry_traits_2::Segment_2 Segment_2;
typedef typename Geometry_traits_2::Line_2 Line_2;
typedef typename Geometry_traits_2::Vector_2 Vector_2;
typedef typename Geometry_traits_2::Direction_2 Direction_2;
typedef typename Geometry_traits_2::FT Number_type;
typedef typename Geometry_traits_2::Object_2 Object_2;
typedef RegularizationTag Regularization_tag;
typedef CGAL::Tag_false Supports_general_polygon_tag;
typedef CGAL::Tag_true Supports_simple_polygon_tag;
Simple_polygon_visibility_2() : p_arr(NULL), geom_traits(NULL) {};
/*! Constructor given an arrangement and the Regularization tag. */
Simple_polygon_visibility_2(const Input_arrangement_2& arr):
p_arr(&arr) {
geom_traits = p_arr->geometry_traits();
query_pt_is_vertex = false;
}
bool is_attached() {
return (p_arr != NULL);
}
void attach(const Input_arrangement_2& arr) {
p_arr = &arr;
geom_traits = p_arr->geometry_traits();
query_pt_is_vertex = false;
}
void detach() {
p_arr = NULL;
geom_traits = NULL;
vertices.clear();
query_pt_is_vertex = false;
}
const Input_arrangement_2& arr() {
return *p_arr;
}
Face_handle compute_visibility(const Point_2& q, const Face_const_handle face,
Output_arrangement_2& out_arr) {
assert(query_pt_is_vertex == false);
assert(query_pt_is_on_halfedge == false);
typename Input_arrangement_2::Ccb_halfedge_const_circulator circ =
face->outer_ccb();
typename Input_arrangement_2::Ccb_halfedge_const_circulator curr = circ;
typename Input_arrangement_2::Halfedge_const_handle he = curr;
std::vector<Point_2> temp_vertices;
Point_2 min_intersect_pt;
bool intersect_on_endpoint = false;
Segment_2 curr_edge(he->source()->point(), he->target()->point());
Segment_2 curr_min_edge(he->source()->point(), he->target()->point());
Point_2 curr_vertex = he->target()->point();
temp_vertices.push_back(curr_vertex);
Number_type min_dist = CGAL::Visibility_2::Compute_squared_distance_2
<Geometry_traits_2, Point_2, Segment_2>(geom_traits, q, curr_edge);
int min_dist_index = 0;
int index = 1;
curr++;
// Push all vertices and determine edge minimum in terms
// of squared distance to query point
do {
he = curr;
curr_edge = Segment_2(he->source()->point(), he->target()->point());
Number_type curr_dist = CGAL::Visibility_2::Compute_squared_distance_2
<Geometry_traits_2, Point_2, Segment_2>(geom_traits, q, curr_edge);
if (curr_dist < min_dist) {
min_dist = curr_dist;
min_dist_index = index;
curr_min_edge = curr_edge;
}
temp_vertices.push_back(he->target()->point());
index++;
} while (++curr != circ);
// Only now compute the intersection point
min_intersect_pt = CGAL::Visibility_2::Construct_projected_point_2
<Geometry_traits_2, Segment_2, Point_2>(geom_traits, curr_min_edge, q);
bool intersect_pt_on_seg_endpoint = false;
if (min_intersect_pt != curr_min_edge.source() &&
min_intersect_pt != curr_min_edge.target()) {
vertices.push_back(min_intersect_pt);
}
else {
intersect_pt_on_seg_endpoint = true;
}
// Now create vector so that first vertex v0 is visible
for (unsigned int k = min_dist_index ; k < temp_vertices.size() ; k++) {
vertices.push_back(temp_vertices[k]);
}
for (unsigned int k = 0 ; k < min_dist_index ; k++) {
vertices.push_back(temp_vertices[k]);
}
// Push first vertex again to fulfill algo precondition
if (min_intersect_pt != curr_min_edge.source() &&
min_intersect_pt != curr_min_edge.target()) {
vertices.push_back(min_intersect_pt);
}
else {
vertices.push_back(vertices[0]);
}
visibility_region_impl(q);
typename std::vector<Point_2> points;
if (!s.empty()) {
Point_2 prev_pt = s.top();
if (prev_pt == min_intersect_pt) {
if (intersect_pt_on_seg_endpoint) {
points.push_back(prev_pt);
}
s.pop();
if (!s.empty()) {
prev_pt = s.top();
points.push_back(prev_pt);
}
}
if (!s.empty()) {
s.pop();
}
while(!s.empty()) {
Point_2 curr_pt = s.top();
if (curr_pt == min_intersect_pt) {
if (intersect_pt_on_seg_endpoint) {
points.push_back(curr_pt);
}
s.pop();
}
else {
points.push_back(curr_pt);
prev_pt = curr_pt;
s.pop();
}
}
}
std::reverse(points.begin(), points.end());
CGAL::Visibility_2::report_while_handling_needles
<Simple_polygon_visibility_2>(geom_traits,
q,
points,
out_arr);
CGAL_precondition(out_arr.number_of_isolated_vertices() == 0);
CGAL_precondition(s.size() == 0);
conditional_regularize(out_arr, Regularization_tag());
vertices.clear();
if (out_arr.faces_begin()->is_unbounded()) {
return ++out_arr.faces_begin();
}
else {
return out_arr.faces_begin();
}
}
Face_handle compute_visibility(const Point_2& q, const Halfedge_const_handle he,
Output_arrangement_2& out_arr ) {
query_pt_is_vertex = false;
query_pt_is_on_halfedge = false;
if (q != he->source()->point()) {
if (q != he->target()->point()) {
vertices.push_back(q);
vertices.push_back(he->target()->point());
query_pt_is_on_halfedge = true;
}
else {
vertices.push_back(q);
query_pt_is_vertex = true;
}
}
typename Input_arrangement_2::Face_const_handle face = he->face();
typename Input_arrangement_2::Ccb_halfedge_const_circulator circ =
face->outer_ccb();
typename Input_arrangement_2::Ccb_halfedge_const_circulator curr;
typename Input_arrangement_2::Halfedge_const_handle he_handle = circ;
while (he_handle != he) {
circ++;
he_handle = circ;
}
circ++;
curr = circ;
do {
he_handle = curr;
Point_2 curr_vertex = he_handle->target()->point();
vertices.push_back(curr_vertex);
} while (++curr != circ);
vertices.pop_back();
vertices.push_back(vertices[0]);
visibility_region_impl(q);
typename std::vector<Point_2> points;
if (!s.empty()) {
Point_2 prev_pt = s.top();
if (prev_pt != q) {
points.push_back(prev_pt);
}
else if (query_pt_is_vertex) {
points.push_back(prev_pt);
}
if (!s.empty()) {
s.pop();
}
while(!s.empty()) {
Point_2 curr_pt = s.top();
if (curr_pt != q) {
points.push_back(curr_pt);
}
else if (query_pt_is_vertex) {
points.push_back(curr_pt);
}
s.pop();
}
}
std::reverse(points.begin(), points.end());
CGAL::Visibility_2::report_while_handling_needles
<Simple_polygon_visibility_2>(geom_traits,
q,
points,
out_arr);
CGAL_precondition(out_arr.number_of_isolated_vertices() == 0);
CGAL_precondition(s.size() == 0);
conditional_regularize(out_arr, Regularization_tag());
vertices.clear();
if (out_arr.faces_begin()->is_unbounded()) {
return ++out_arr.faces_begin();
}
else {
return out_arr.faces_begin();
}
}
private:
const Input_arrangement_2 *p_arr;
const Geometry_traits_2 *geom_traits;
std::stack<Point_2> s;
std::vector<Point_2> vertices;
enum {LEFT, RIGHT, SCANA, SCANC, FINISH} upcase;
bool query_pt_is_vertex;
bool query_pt_is_on_halfedge;
void conditional_regularize(Output_arrangement_2& out_arr, CGAL::Tag_true) {
regularize_output(out_arr);
}
void conditional_regularize(Output_arrangement_2& out_arr, CGAL::Tag_false) {
//do nothing
}
void regularize_output(Output_arrangement_2& out_arr) {
typename Output_arrangement_2::Edge_iterator e_itr;
for (e_itr = out_arr.edges_begin() ;
e_itr != out_arr.edges_end() ; e_itr++) {
Halfedge_handle he = e_itr;
Halfedge_handle he_twin = he->twin();
if (he->face() == he_twin->face()) {
out_arr.remove_edge(he);
}
}
}
void visibility_region_impl(const Point_2& q) {
int i = 0;
Point_2 w;
if (query_pt_is_vertex) {
if (CGAL::Visibility_2::Orientation_2(geom_traits,
q,
vertices[1],
vertices[2]) == CGAL::LEFT_TURN) {
upcase = LEFT;
i = 1;
w = vertices[1];
vertices.pop_back();
s.push(vertices[vertices.size()-1]);
s.push(vertices[0]);
s.push(vertices[1]);
}
else {
upcase = SCANA;
i = 1;
w = vertices[1];
vertices.pop_back();
s.push(vertices[vertices.size()-1]);
s.push(vertices[0]);
s.push(vertices[1]);
}
}
else {
CGAL::Orientation orient = CGAL::Visibility_2::Orientation_2(geom_traits,
q,
vertices[0],
vertices[1]);
if (orient == CGAL::LEFT_TURN || orient == CGAL::COLLINEAR) {
upcase = LEFT;
i = 1;
w = vertices[1];
s.push(vertices[0]);
s.push(vertices[1]);
}
else {
upcase = SCANA;
i = 1;
w = vertices[0];
s.push(vertices[0]);
}
}
do {
switch(upcase) {
case LEFT:
left(i, w, q);
break;
case RIGHT:
right(i, w, q);
break;
case SCANA:
scana(i, w, q);
break;
case SCANC:
scanc(i, w, q);
break;
}
} while(upcase != FINISH);
}
void left(int& i, Point_2& w, const Point_2& query_pt) {
if (i == vertices.size() - 1) {
upcase = FINISH;
}
else {
CGAL::Orientation orient = CGAL::Visibility_2::Orientation_2(geom_traits,
query_pt,
w,
vertices[i+1]);
if (orient == CGAL::LEFT_TURN || orient == CGAL::COLLINEAR) {
upcase = LEFT;
s.push(vertices[i+1]);
w = vertices[i+1];
i++;
}
else {
Point_2 s_t = s.top();
s.pop();
Point_2 s_t_prev = s.top();
if (CGAL::Visibility_2::Orientation_2(geom_traits,
s_t_prev,
vertices[i],
vertices[i+1]) == CGAL::RIGHT_TURN) {
upcase = SCANA;
w = vertices[i];
}
else {
upcase = RIGHT;
w = vertices[i+1];
i++;
}
s.push(s_t);
}
}
}
void right(int& i, Point_2& w, const Point_2& query_pt) {
// Scan s_t, s_t-1, ..., s_1, s_0 for the first edge (s_j, s_j-1) such that
// (z, s_j, v_i) is a right turn and (z, s_j-1, v_i) is a left turn, or
bool found = false;
while(!found && upcase == RIGHT) {
assert(!s.empty());
Point_2 s_j = s.top();
s.pop();
assert(!s.empty());
Point_2 s_j_prev = s.top();
if (vertices[i-1] != s_j && CGAL::Visibility_2::Do_intersect_2
<Geometry_traits_2, Segment_2, Segment_2>(geom_traits,
Segment_2(s_j, s_j_prev),
Segment_2(vertices[i-1], vertices[i]))) {
upcase = SCANA;
found = true;
w = s.top();
}
else {
CGAL::Orientation orient = CGAL::Visibility_2::Orientation_2(geom_traits,
query_pt,
w,
s_j_prev);
if (orient == CGAL::RIGHT_TURN || orient == CGAL::COLLINEAR) {
found = true;
CGAL::Orientation qwv_orient = CGAL::Visibility_2::Orientation_2(geom_traits,
query_pt,
w,
vertices[i+1]);
if (qwv_orient == CGAL::RIGHT_TURN) {
upcase = RIGHT;
w = vertices[i+1];
s.push(s_j);
i++;
}
else if ((qwv_orient == CGAL::LEFT_TURN || qwv_orient == CGAL::COLLINEAR) &&
(CGAL::Visibility_2::Orientation_2(geom_traits,
vertices[i-1],
vertices[i],
vertices[i+1]) == CGAL::RIGHT_TURN)) {
Segment_2 s1(s_j_prev, s_j);
Ray_2 s2(query_pt, w);
Object_2 result = CGAL::Visibility_2::Intersect_2
<Geometry_traits_2, Segment_2, Ray_2>(geom_traits, s1, s2);
if (const Point_2 *ipoint = CGAL::object_cast<Point_2>(&result)) {
if (i < vertices.size()-1) {
upcase = LEFT;
if (*ipoint != s_j_prev) {
s.push(*ipoint);
}
s.push(w);
s.push(vertices[i+1]);
w = vertices[i+1];
i++;
}
else {
if (query_pt_is_vertex && *ipoint != s_j_prev) {
s.push(*ipoint);
}
upcase = FINISH;
}
}
}
else if (CGAL::Visibility_2::Orientation_2(geom_traits,
vertices[i-1],
vertices[i],
vertices[i+1]) == CGAL::LEFT_TURN) {
upcase = SCANC;
w = vertices[i];
s.push(s_j);
i++;
}
else {
Segment_2 s1(s_j_prev, s_j);
Ray_2 s2(query_pt, w);
Object_2 result = CGAL::Visibility_2::Intersect_2
<Geometry_traits_2, Segment_2, Ray_2>(geom_traits, s1, s2);
if (const Point_2 *ipoint = CGAL::object_cast<Point_2>(&result)) {
upcase = LEFT;
s.push(*ipoint);
s.push(w);
s.push(vertices[i+1]);
w = vertices[i+1];
i++;
}
}
}
}
}
}
void scana(int& i, Point_2& w, const Point_2& query_pt) {
// Scan v_i, v_i+1, ..., v_n for the first edge to intersect (z, s_t)
int k = i;
while (k+1 < vertices.size()) {
CGAL::Orientation qwv_orient = CGAL::Visibility_2::Orientation_2(geom_traits,
query_pt,
w,
vertices[k+1]);
if (qwv_orient == CGAL::LEFT_TURN) {
Ray_2 s2(query_pt, s.top());
Segment_2 s1(vertices[k], vertices[k+1]);
Object_2 result = CGAL::Visibility_2::Intersect_2
<Geometry_traits_2, Segment_2, Ray_2>(geom_traits, s1, s2);
if (const Point_2 *ipoint = CGAL::object_cast<Point_2>(&result)) {
s.push(*ipoint);
s.push(vertices[k+1]);
w = vertices[k+1];
i = k+1;
upcase = LEFT;
break;
}
}
else if (qwv_orient == CGAL::COLLINEAR) {
if (!query_pt_is_vertex && !query_pt_is_on_halfedge) {
s.push(vertices[k+1]);
w = vertices[k+1];
i = k+1;
upcase = LEFT;
break;
}
if ((query_pt_is_vertex || query_pt_is_on_halfedge)
&& CGAL::Visibility_2::Collinear_are_ordered_along_line_2<Geometry_traits_2>
(geom_traits, query_pt, w, vertices[k+1])) {
s.push(vertices[k+1]);
w = vertices[k+1];
i = k+1;
upcase = LEFT;
break;
}
}
k++;
}
}
void scanc(int& i, Point_2& w, const Point_2& query_pt) {
// Scan v_i, v_i+1, ..., v_n-1, v_n for the first edge to intersect (s_t, w)
assert(i != vertices.size()-1);
Point_2 s_t = s.top();
int k = i;
Point_2 intersection_pt;
while (k < vertices.size()-1) {
CGAL::Orientation qwv_orient = CGAL::Visibility_2::Orientation_2(geom_traits, query_pt, w, vertices[k]);
if (qwv_orient == CGAL::RIGHT_TURN || qwv_orient == CGAL::COLLINEAR) {
break;
}
k++;
}
w = vertices[k];
i = k;
upcase = RIGHT;
}
};
} // namespace CGAL
#endif