cgal/Point_set_shape_detection_3/include/CGAL/Plane_regularization.h

773 lines
28 KiB
C++

// Copyright (c) 2015 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) :
//
/**
* \ingroup PkgPointSetShapeDetection3
* \file CGAL/Plane_regularization.h
*
*/
#ifndef CGAL_PLANE_REGULARIZATION_H
#define CGAL_PLANE_REGULARIZATION_H
#include <CGAL/Shape_detection_3.h>
#include <CGAL/centroid.h>
#include <boost/foreach.hpp>
namespace CGAL {
template <typename Traits>
class Plane_regularization
{
public:
typedef Plane_regularization<Traits> Self;
typedef typename Traits::FT FT;
typedef typename Traits::Point_3 Point;
typedef typename Traits::Vector_3 Vector;
typedef typename Traits::Plane_3 Plane;
typedef typename Traits::Point_map Point_map;
typedef typename Traits::Normal_map Normal_map;
typedef typename Traits::Input_range Input_range;
typedef typename Input_range::iterator Input_iterator;
typedef Shape_detection_3::Shape_base<Traits> Shape;
typedef Shape_detection_3::Plane<Traits> Plane_shape;
private:
Traits m_traits;
Input_iterator m_input_begin;
Input_iterator m_input_end;
Point_map m_point_pmap;
Normal_map m_normal_pmap;
std::vector<boost::shared_ptr<Plane_shape> > m_planes;
public:
Plane_regularization (Traits t = Traits ())
: m_traits (t)
{
}
Plane_regularization (Input_range& input_range,
const Shape_detection_3::Efficient_RANSAC<Traits>& shape_detection)
: m_traits (shape_detection.traits())
{
m_input_begin = input_range.begin ();
m_input_end = input_range.end ();
BOOST_FOREACH (boost::shared_ptr<Shape> shape, shape_detection.shapes())
{
boost::shared_ptr<Plane_shape> pshape
= boost::dynamic_pointer_cast<Plane_shape>(shape);
// Ignore all shapes other than plane
if (pshape == boost::shared_ptr<Plane_shape>())
continue;
m_planes.push_back (pshape);
}
}
virtual ~Plane_regularization ()
{
clear ();
}
void clear ()
{
std::vector<boost::shared_ptr<Plane_shape> > ().swap (m_planes);
}
void run (FT epsilon, FT tolerance_coplanarity)
{
// WRAPPER BEGIN
std::vector<Plane> extracted_planes;
std::vector<std::vector<int> > plane_point_index;
std::vector<int> primitive_index (m_input_end - m_input_begin, -1);
std::vector<int> label_plane (m_input_end - m_input_begin, -1);
std::vector<Point> list_centroid;
std::vector<FT> list_areas;
for (std::size_t i = 0; i < m_planes.size (); ++ i)
{
extracted_planes.push_back (static_cast<Plane> (*(m_planes[i])));
plane_point_index.push_back (std::vector<int>());
std::copy (m_planes[i]->indices_of_assigned_points().begin (),
m_planes[i]->indices_of_assigned_points().begin (),
std::back_inserter (plane_point_index.back ()));
std::vector < Point > listp;
for (std::size_t j = 0; j < plane_point_index.back ().size (); ++ j)
{
primitive_index[j] = i;
int yy = plane_point_index.back()[j];
label_plane[yy] = i;
Point pt = get (m_point_pmap, *(m_input_begin + yy));
listp.push_back(pt);
}
list_centroid.push_back (CGAL::centroid (listp.begin (), listp.end ()));
list_areas.push_back ((double)(plane_point_index.back().size()) / 100.);
}
// WRAPPER END
// find pairs of epsilon-parallel primitives and store them in table_parallel
std::vector < std::vector < bool > > table_parallel;
for( std::size_t i=0;i<extracted_planes.size(); i++)
{
std::vector < bool > table_parallel_tmp;
for( std::size_t j=0;j<extracted_planes.size(); j++)
{
Vector v1=extracted_planes[i].orthogonal_vector();
Vector v2=extracted_planes[j].orthogonal_vector();
if (std::fabs(v1*v2)>1.-epsilon && i!=j)
table_parallel_tmp.push_back(true);
else
table_parallel_tmp.push_back(false);
}
table_parallel.push_back(table_parallel_tmp);
}
// clustering the parallel primitives and store them in list_parallel_planes
// & compute the normal, size and cos angle to the vertical of each cluster, and store that in list_cluster_normales, list_cluster_angle and list_cluster_area
std::vector < std::vector < int > > list_parallel_planes;
std::vector < Vector > list_cluster_normales;
std::vector < double > list_cluster_cosangle_vertical;
std::vector < double > list_cluster_area;
std::vector < bool > is_available;
for( std::size_t i=0;i<extracted_planes.size();i++)
is_available.push_back(true);
for( std::size_t i=0;i<extracted_planes.size();i++)
{
if(is_available[i])
{
is_available[i]=false;
//initialization containers
std::vector < int > index_container_parallel;
index_container_parallel.push_back(i);
std::vector < int > index_container_former_ring_parallel;
index_container_former_ring_parallel.push_back(i);
std::list < int > index_container_current_ring_parallel;
//propagation over the pairs of epsilon-parallel primitives
bool propagation=true;
Vector cluster_normal=extracted_planes[i].orthogonal_vector();
double cumulated_area=list_areas[i];
do
{
propagation=false;
for (std::size_t k=0;k<index_container_former_ring_parallel.size();k++)
{
int plane_index=index_container_former_ring_parallel[k];
for (std::size_t it=0;it<table_parallel[plane_index].size();it++)
{
Vector normal_it=extracted_planes[it].orthogonal_vector();
if( table_parallel[plane_index][it] && is_available[it]
&& std::fabs(normal_it*cluster_normal)>1.-epsilon )
{
propagation=true;
index_container_current_ring_parallel.push_back(it);
is_available[it]=false;
if(cluster_normal*normal_it <0)
normal_it=-normal_it;
cluster_normal=(FT)cumulated_area*cluster_normal+(FT)list_areas[it]*normal_it;
FT norm=1./sqrt(cluster_normal.squared_length());
cluster_normal=norm*cluster_normal;
cumulated_area+=list_areas[it];
}
}
}
//update containers
index_container_former_ring_parallel.clear();
for (std::list < int >::iterator it = index_container_current_ring_parallel.begin();
it != index_container_current_ring_parallel.end(); ++it)
{
index_container_former_ring_parallel.push_back(*it);
index_container_parallel.push_back(*it);
}
index_container_current_ring_parallel.clear();
}
while(propagation);
list_parallel_planes.push_back(index_container_parallel);
list_cluster_normales.push_back(cluster_normal);
list_cluster_area.push_back(cumulated_area);
Vector v_vertical(0.,0.,1.);
list_cluster_cosangle_vertical.push_back(std::fabs(v_vertical*cluster_normal));
}
}
is_available.clear();
//discovery orthogonal relationship between clusters
std::vector < std::vector < bool > > group_planes_orthogonal;
for( std::size_t i=0;i<list_parallel_planes.size(); i++)
{
std::vector < bool > gp_tmp;
for( std::size_t j=0;j<list_parallel_planes.size(); j++)
gp_tmp.push_back(false);
group_planes_orthogonal.push_back(gp_tmp);
}
for (std::size_t i=0; i<group_planes_orthogonal.size();i++)
{
for (std::size_t j=0; j<group_planes_orthogonal.size();j++)
{
if( i!=j && std::fabs(list_cluster_normales[i]*list_cluster_normales[j])<epsilon)
{
group_planes_orthogonal[i][j]=true;
group_planes_orthogonal[j][i]=true;
}
}
}
//clustering the vertical cosangle and store their centroids in cosangle_centroids and the centroid index of each cluster in list_cluster_index
std::vector < double > cosangle_centroids;
std::vector < int > list_cluster_index;
for( std::size_t i=0;i<list_cluster_cosangle_vertical.size(); i++)
list_cluster_index.push_back(-1);
int mean_index=0;
for( std::size_t i=0;i<list_cluster_cosangle_vertical.size(); i++)
{
if(list_cluster_index[i]<0)
{
list_cluster_index[i]=mean_index;
double mean=list_cluster_area[i]*list_cluster_cosangle_vertical[i];
double mean_area=list_cluster_area[i];
for (std::size_t j=i+1; j<list_cluster_cosangle_vertical.size(); j++)
{
if( list_cluster_index[j]<0 && std::fabs(list_cluster_cosangle_vertical[j]-mean/mean_area)<epsilon )
{
list_cluster_index[j]=mean_index;
mean_area+=list_cluster_area[j];
mean+=list_cluster_area[j]*list_cluster_cosangle_vertical[j];
}
}
mean_index++;
mean/=mean_area;
cosangle_centroids.push_back(mean);
}
}
//desactive Z-verticalité
for( std::size_t i=0;i<cosangle_centroids.size(); i++)
{
if(cosangle_centroids[i]<epsilon)
cosangle_centroids[i]=0;
else if(cosangle_centroids[i]>1.-epsilon)
cosangle_centroids[i]=1;
}
for (std::size_t i=0; i<group_planes_orthogonal.size();i++)
list_cluster_cosangle_vertical[i]=cosangle_centroids[list_cluster_index[i]];
//display console
// /*
std::cout<<std::endl<<std::endl<<"clusters of parallel primitives:";
for (std::size_t i=0; i<list_parallel_planes.size();i++)
{
std::cout<<std::endl<<i<<" -> ";
for (std::size_t j=0; j<list_parallel_planes[i].size();j++)
std::cout<<list_parallel_planes[i][j]<<" ";
}
std::cout<<std::endl<<std::endl<<"pairs of orthogonal clusters:";
for (std::size_t i=0; i<group_planes_orthogonal.size();i++)
{
std::cout<<std::endl<<i<<" -> ";
for (std::size_t j=0;j<group_planes_orthogonal.size();j++)
{
if(group_planes_orthogonal[i][j])
std::cout<<j<<" ";
}
std::cout<<" -> "<<list_cluster_cosangle_vertical[i]<<" -> "<<cosangle_centroids[list_cluster_index[i]];
}
// */
//find subgraphs of mutually orthogonal clusters (store index of clusters in subgraph_clusters), and select the cluster of largest area
std::vector < std::vector < int > > subgraph_clusters;
std::vector < int > subgraph_clusters_max_area_index;
std::vector < bool > is_free;
for (std::size_t i=0; i<list_parallel_planes.size();i++)
is_free.push_back(true);
for (std::size_t i=0; i<list_parallel_planes.size();i++)
{
if(is_free[i])
{
is_free[i]=false;
double max_area=list_cluster_area[i];
int index_max_area=i;
//initialization containers
std::vector < int > index_container;
index_container.push_back(i);
std::vector < int > index_container_former_ring;
index_container_former_ring.push_back(i);
std::list < int > index_container_current_ring;
//propagation
bool propagation=true;
do
{
propagation=false;
//neighbors
for (std::size_t k=0;k<index_container_former_ring.size();k++)
{
int cluster_index=index_container_former_ring[k];
for (std::size_t j=0;j<group_planes_orthogonal[cluster_index].size();j++)
{
if(group_planes_orthogonal[cluster_index][j] && is_free[j])
{
propagation=true;
index_container_current_ring.push_back(j);
is_free[j]=false;
if(max_area<list_cluster_area[j])
{
max_area=list_cluster_area[j];
index_max_area=j;
}
}
}
}
//update containers
index_container_former_ring.clear();
for(std::list < int >::iterator it = index_container_current_ring.begin();
it != index_container_current_ring.end(); ++it)
{
index_container_former_ring.push_back(*it);
index_container.push_back(*it);
}
index_container_current_ring.clear();
}
while(propagation);
subgraph_clusters.push_back(index_container);
subgraph_clusters_max_area_index.push_back(index_max_area);
}
}
is_free.clear();
//create subgraphs of mutually orthogonal clusters in which the largest cluster is excluded and store in subgraph_clusters_prop
std::vector < std::vector < int > > subgraph_clusters_prop;
for (std::size_t i=0;i<subgraph_clusters.size(); i++)
{
int index=subgraph_clusters_max_area_index[i];
std::vector < int > subgraph_clusters_prop_temp;
for (std::size_t j=0;j<subgraph_clusters[i].size(); j++)
if(subgraph_clusters[i][j]!=index)
subgraph_clusters_prop_temp.push_back(subgraph_clusters[i][j]);
subgraph_clusters_prop.push_back(subgraph_clusters_prop_temp);
}
//display console
/*
for (std::size_t i=0;i<subgraph_clusters_prop.size(); i++)
{
std::cout<<std::endl<<std::endl<<"subgraph "<<i<<" ("<<subgraph_clusters_max_area_index[i]<<" max area): ";
for (std::size_t j=0;j<subgraph_clusters_prop[i].size(); j++) std::cout<<subgraph_clusters_prop[i][j]<<" ";
}
*/
//regularization of cluster normals : in eachsubgraph, we start from the largest area cluster and we propage over the subgraph by regularizing the normals of the clusters accorting to orthogonality and cosangle to vertical
std::vector< bool > cluster_is_available;
for( std::size_t i=0;i<list_cluster_cosangle_vertical.size();i++)
cluster_is_available.push_back(true);
for (std::size_t i=0; i<subgraph_clusters_prop.size();i++)
{
int index_current=subgraph_clusters_max_area_index[i];
Vector vec_current=regularize_normal(list_cluster_normales[index_current],
list_cluster_cosangle_vertical[index_current]);
list_cluster_normales[index_current]=vec_current;
cluster_is_available[index_current]=false;
//initialization containers
std::vector < int > index_container;
index_container.push_back(index_current);
std::vector < int > index_container_former_ring;
index_container_former_ring.push_back(index_current);
std::list < int > index_container_current_ring;
//propagation
bool propagation=true;
do
{
propagation=false;
//neighbors
for (std::size_t k=0;k<index_container_former_ring.size();k++)
{
int cluster_index=index_container_former_ring[k];
for (std::size_t j=0;j<group_planes_orthogonal[cluster_index].size();j++)
{
if(group_planes_orthogonal[cluster_index][j] && cluster_is_available[j])
{
propagation=true;
index_container_current_ring.push_back(j);
cluster_is_available[j]=false;
Vector new_vect=regularize_normals_from_prior(list_cluster_normales[cluster_index],
list_cluster_normales[j],
list_cluster_cosangle_vertical[j]);
list_cluster_normales[j]=new_vect;
}
}
}
//update containers
index_container_former_ring.clear();
for(std::list < int >::iterator it = index_container_current_ring.begin();
it != index_container_current_ring.end(); ++it)
{
index_container_former_ring.push_back(*it);
index_container.push_back(*it);
}
index_container_current_ring.clear();
}while(propagation);
}
//recompute optimal plane for each primitive after normal regularization
for (std::size_t i=0; i<list_cluster_normales.size();i++)
{
Vector vec_reg=list_cluster_normales[i];
for (std::size_t j=0; j<list_parallel_planes[i].size();j++)
{
int index_prim=list_parallel_planes[i][j];
Point pt_reg=extracted_planes[index_prim].projection(list_centroid[index_prim]);
if( extracted_planes[index_prim].orthogonal_vector() * vec_reg < 0)
vec_reg=-vec_reg;
Plane plane_reg(pt_reg,vec_reg);
if( std::fabs(extracted_planes[index_prim].orthogonal_vector()*plane_reg.orthogonal_vector()) > 1. - epsilon)
extracted_planes[index_prim]=plane_reg;
}
}
//detecting co-planarity and store in list_coplanar_prim
std::vector< std::vector< std::vector < int > > > list_coplanar_prim;
for (std::size_t i=0; i<list_parallel_planes.size();i++)
{
std::vector< std::vector < int > > list_coplanar_prim_tmp;
Vector vec_reg=list_cluster_normales[i];
std::vector < int > list_cop_index;
for( std::size_t ip=0;ip<list_parallel_planes[i].size(); ip++)
list_cop_index.push_back(-1);
int cop_index=0;
for (std::size_t j=0; j<list_parallel_planes[i].size();j++)
{
int index_prim=list_parallel_planes[i][j];
if(list_cop_index[j]<0)
{
std::vector < int > list_coplanar_prim_tmp_tmp;
list_cop_index[j]=cop_index;
list_coplanar_prim_tmp_tmp.push_back(index_prim);
Point pt_reg=extracted_planes[index_prim].projection(list_centroid[index_prim]);
Plane plan_reg(pt_reg,vec_reg);
for (std::size_t k=j+1; k<list_parallel_planes[i].size(); k++)
{
if( list_cop_index[k]<0)
{
int index_prim_next=list_parallel_planes[i][k];
Point pt_reg_next=extracted_planes[index_prim_next].projection(list_centroid[index_prim_next]);
Point pt_proj=plan_reg.projection(pt_reg_next);
double distance=distance_Point(pt_reg_next,pt_proj);
if(distance<tolerance_coplanarity )
{
list_cop_index[k]=cop_index;
list_coplanar_prim_tmp_tmp.push_back(index_prim_next);
}
}
}
list_coplanar_prim_tmp.push_back(list_coplanar_prim_tmp_tmp);
cop_index++;
}
}
list_coplanar_prim.push_back(list_coplanar_prim_tmp);
}
//regularize primitive position by computing barycenter of coplanar planes
std::vector < std::vector < int > > list_primitive_reg_index_extracted_planes;
std::vector < Plane > list_primitive_reg;
for (std::size_t i=0;i<list_coplanar_prim.size();i++)
{
for (std::size_t j=0;j<list_coplanar_prim[i].size();j++)
{
Point pt_bary(0.,0.,0.);
double area=0;
for (std::size_t k=0; k<list_coplanar_prim[i][j].size();k++)
{
int index_prim=list_coplanar_prim[i][j][k];
Point pt_reg=extracted_planes[index_prim].projection(list_centroid[index_prim]);
pt_bary=barycenter(pt_bary, area,pt_reg,list_areas[index_prim]);
area+=list_areas[index_prim];
}
Vector vec_reg=extracted_planes[list_coplanar_prim[i][j][0]].orthogonal_vector();
Plane plane_reg(pt_bary,vec_reg);
bool is_reg_used=false;
std::vector< int > list_primitive_reg_index_extracted_planes_tmp1;
for (std::size_t k=0; k<list_coplanar_prim[i][j].size();k++)
{
int index_prim=list_coplanar_prim[i][j][k];
if( std::fabs(extracted_planes[index_prim].orthogonal_vector()*plane_reg.orthogonal_vector()) > 1. - epsilon)
{
if(extracted_planes[index_prim].orthogonal_vector()*plane_reg.orthogonal_vector()<0)
extracted_planes[index_prim]=plane_reg.opposite();
else
extracted_planes[index_prim]=plane_reg;
is_reg_used=true;
list_primitive_reg_index_extracted_planes_tmp1.push_back(index_prim);
}
else{
list_primitive_reg.push_back(extracted_planes[index_prim]);
std::vector< int > list_primitive_reg_index_extracted_planes_tmp;
list_primitive_reg_index_extracted_planes_tmp.push_back(index_prim);
list_primitive_reg_index_extracted_planes.push_back(list_primitive_reg_index_extracted_planes_tmp);
}
}
if(is_reg_used) {
list_primitive_reg.push_back(plane_reg);
list_primitive_reg_index_extracted_planes.push_back(list_primitive_reg_index_extracted_planes_tmp1);
}
}
}
std::cout<<std::endl<<std::endl<<"NB planes final = "<<list_primitive_reg.size()<<std::endl<<std::endl;
//merge similar planes in plane_point_index and extracted planes and HPS[i].primitive_index
std::vector < std::vector < int > > plane_point_index_temp;
std::vector < Plane > extracted_planes_temp;
std::vector < bool > has_been_merged;
for (std::size_t i=0; i<plane_point_index.size();i++)
has_been_merged.push_back(false);
for (std::size_t i=0; i<plane_point_index.size();i++)
{
if (!has_been_merged[i])
{
extracted_planes_temp.push_back(extracted_planes[i]);
int label_index=extracted_planes_temp.size()-1;
plane_point_index_temp.push_back(plane_point_index[i]);
for (std::size_t k=0; k<plane_point_index[i].size();k++)
{
int index_pt=plane_point_index[i][k];
primitive_index[index_pt]=label_index;
label_plane[index_pt]=label_index;
}
for (std::size_t j=i+1;j<plane_point_index.size();j++)
{
if(extracted_planes[i]==extracted_planes[j])
{ //if identical (do opposite plane too ?) then store the second in the first
has_been_merged[j]=true;
std::vector< int > plane_point_index_new
= plane_point_index_temp[plane_point_index_temp.size()-1];
for (std::size_t k=0; k<plane_point_index[j].size();k++)
{
int ind=plane_point_index[j][k];
plane_point_index_new.push_back(ind);
primitive_index[ind]=label_index;
label_plane[ind]=label_index;
}
plane_point_index_temp[plane_point_index_temp.size()-1]=plane_point_index_new;
}
}
}
}
extracted_planes=extracted_planes_temp;
plane_point_index=plane_point_index_temp;
}
FT distance_Point (const Point& a, const Point& b)
{
return std::sqrt (CGAL::squared_distance (a, b));
}
Vector regularize_normal (const Vector& n, FT cos_vertical)
{
FT A = 1 - cos_vertical * cos_vertical;
FT B = 1 + (n.y() * n.y()) / (n.x() * n.x());
FT vx = std::sqrt (A/B);
if (n.x() < 0)
vx = -vx;
FT vy = vx * (n.y() / n.x());
Vector res (vx, vy, cos_vertical);
return res / std::sqrt (res * res);
}
Vector regularize_normals_from_prior (const Vector& np,
const Vector& n,
FT cos_vertical)
{
FT vx, vy;
if (np.x() != 0)
{
FT a = (np.y() * np.y()) / (np.x() * np.x()) + 1;
FT b = 2 * np.y() * np.z() * cos_vertical / np.x();
FT c= cos_vertical * cos_vertical-1;
if (4 * a * c > b * b)
return regularize_normal (n, cos_vertical);
else
{
FT delta = std::sqrt (b * b-4 * a * c);
FT vy1= (-b-delta) / (2 * a);
FT vy2= (-b+delta) / (2 * a);
vy = (std::fabs(n.y()-vy1) < std::fabs(n.y()-vy2))
? vy1 : vy2;
vx = (-np.y() * vy-np.z() * cos_vertical) / np.x();
}
}
else if (np.y() != 0)
{
vy = -np.z() * cos_vertical / np.y();
vx = std::sqrt (1 - cos_vertical * cos_vertical - vy * vy);
if (n.x() < 0)
vx = -vx;
}
else
return regularize_normal (n, cos_vertical);
Vector res (vx, vy, cos_vertical);
FT norm = std::max(1e-5, 1. / sqrt(res.squared_length ()));
return norm * res;
}
};
}; // namespace CGAL
#endif // CGAL_PLANE_REGULARIZATION_H