mirror of https://github.com/CGAL/cgal
1540 lines
57 KiB
C++
1540 lines
57 KiB
C++
// TODO: Add licence
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
//
|
|
//
|
|
// Author(s) : Michael Hemmer <hemmer@informatik.uni-mainz.de>
|
|
// Sebastian Limbach <slimbach@mpi-inf.mpg.de>
|
|
//
|
|
// ============================================================================
|
|
#ifndef CGAL_POLYNOMIAL_TRAITS_D_H
|
|
#define CGAL_POLYNOMIAL_TRAITS_D_H
|
|
|
|
#include <CGAL/basic.h>
|
|
|
|
#include <CGAL/Polynomial/fwd.h>
|
|
#include <CGAL/Polynomial/misc.h>
|
|
#include <CGAL/Polynomial/Polynomial_type.h>
|
|
#include <CGAL/Polynomial/polynomial_utils.h>
|
|
#include <CGAL/Polynomial/resultant.h>
|
|
#include <CGAL/Polynomial/subresultants.h>
|
|
#include <CGAL/Polynomial/square_free_factorization.h>
|
|
#include <CGAL/Polynomial/modular_filter.h>
|
|
#include <CGAL/extended_euclidean_algorithm.h>
|
|
|
|
#define CGAL_POLYNOMIAL_TRAITS_D_BASE_TYPEDEFS \
|
|
typedef Polynomial_traits_d< Polynomial< Coefficient_ > > PT; \
|
|
typedef Polynomial_traits_d< Coefficient_ > PTC; \
|
|
\
|
|
public: \
|
|
typedef Polynomial<Coefficient_> Polynomial_d; \
|
|
typedef Coefficient_ Coefficient; \
|
|
\
|
|
typedef typename Innermost_coefficient<Polynomial_d>::Type \
|
|
Innermost_coefficient; \
|
|
static const int d = Dimension<Polynomial_d>::value; \
|
|
\
|
|
\
|
|
private: \
|
|
typedef std::pair< Exponent_vector, Innermost_coefficient > \
|
|
Exponents_coeff_pair; \
|
|
typedef std::vector< Exponents_coeff_pair > Monom_rep; \
|
|
\
|
|
typedef CGAL::Recursive_const_flattening< d-1, \
|
|
typename CGAL::Polynomial<Coefficient>::const_iterator > \
|
|
Coefficient_flattening; \
|
|
\
|
|
public: \
|
|
typedef typename Coefficient_flattening::Recursive_flattening_iterator \
|
|
Innermost_coefficient_iterator; \
|
|
typedef typename Polynomial_d::iterator Coefficient_iterator; \
|
|
\
|
|
private:
|
|
|
|
CGAL_BEGIN_NAMESPACE;
|
|
|
|
namespace CGALi {
|
|
|
|
// Base class for functors depending on the algebraic category of the
|
|
// innermost coefficient
|
|
template< class Coefficient_, class ICoeffAlgebraicCategory >
|
|
class Polynomial_traits_d_base_icoeff_algebraic_category {
|
|
public:
|
|
typedef Null_functor Multivariate_content;
|
|
typedef Null_functor Interpolate;
|
|
};
|
|
|
|
// Specializations
|
|
template< class Coefficient_ >
|
|
class Polynomial_traits_d_base_icoeff_algebraic_category<
|
|
Polynomial< Coefficient_ >, Integral_domain_without_division_tag >
|
|
: public Polynomial_traits_d_base_icoeff_algebraic_category<
|
|
Polynomial< Coefficient_ >, Null_tag > {};
|
|
|
|
template< class Coefficient_ >
|
|
class Polynomial_traits_d_base_icoeff_algebraic_category<
|
|
Polynomial< Coefficient_ >, Integral_domain_tag >
|
|
: public Polynomial_traits_d_base_icoeff_algebraic_category<
|
|
Polynomial< Coefficient_ >, Integral_domain_without_division_tag > {};
|
|
|
|
template< class Coefficient_ >
|
|
class Polynomial_traits_d_base_icoeff_algebraic_category<
|
|
Polynomial< Coefficient_ >, Unique_factorization_domain_tag >
|
|
: public Polynomial_traits_d_base_icoeff_algebraic_category<
|
|
Polynomial< Coefficient_ >, Integral_domain_tag > {
|
|
CGAL_POLYNOMIAL_TRAITS_D_BASE_TYPEDEFS
|
|
|
|
public:
|
|
|
|
// Multivariate_content;
|
|
struct Multivariate_content
|
|
: public Unary_function< Polynomial_d , Innermost_coefficient >{
|
|
Innermost_coefficient
|
|
operator()(const Polynomial_d& p) const {
|
|
typedef Innermost_coefficient_iterator IT;
|
|
Innermost_coefficient content(0);
|
|
for (IT it = typename PT::Innermost_coefficient_begin()(p);
|
|
it != typename PT::Innermost_coefficient_end()(p);
|
|
it++){
|
|
content = CGAL::gcd(content, *it);
|
|
if(CGAL::is_one(content)) break;
|
|
}
|
|
return content;
|
|
}
|
|
};
|
|
|
|
};
|
|
|
|
template< class Coefficient_ >
|
|
class Polynomial_traits_d_base_icoeff_algebraic_category<
|
|
Polynomial< Coefficient_ >, Euclidean_ring_tag >
|
|
: public Polynomial_traits_d_base_icoeff_algebraic_category<
|
|
Polynomial< Coefficient_ >, Unique_factorization_domain_tag > {};
|
|
|
|
template< class Coefficient_ >
|
|
class Polynomial_traits_d_base_icoeff_algebraic_category<
|
|
Polynomial< Coefficient_ >, Field_tag >
|
|
: public Polynomial_traits_d_base_icoeff_algebraic_category<
|
|
Polynomial< Coefficient_ >, Integral_domain_tag > {
|
|
CGAL_POLYNOMIAL_TRAITS_D_BASE_TYPEDEFS
|
|
|
|
public:
|
|
|
|
// Multivariate_content;
|
|
struct Multivariate_content
|
|
: public Unary_function< Polynomial_d , Innermost_coefficient >{
|
|
Innermost_coefficient
|
|
operator()(const Polynomial_d& p) const {
|
|
typename PT::Compare compare;
|
|
if( compare( p, Polynomial_d(0) ) == EQUAL )
|
|
return Innermost_coefficient(0);
|
|
else
|
|
return Innermost_coefficient(1);
|
|
}
|
|
};
|
|
|
|
struct Interpolate{
|
|
typedef Polynomial<Innermost_coefficient> Polynomial_1;
|
|
|
|
void operator() (
|
|
const Polynomial_1& m1, const Polynomial_d& u1,
|
|
const Polynomial_1& m2, const Polynomial_d& u2,
|
|
Polynomial_1& m, Polynomial_d& u) const {
|
|
Polynomial_1 s,t;
|
|
|
|
CGAL::extended_euclidean_algorithm(m1,m2,s,t);
|
|
m = m1 * m2;
|
|
this->operator()(m1,m2,m,s,t,u1,u2,u);
|
|
}
|
|
|
|
void operator() (
|
|
const Polynomial_1& m1, const Polynomial_1& m2, const Polynomial_1& m,
|
|
const Polynomial_1& s, const Polynomial_1& t,
|
|
Polynomial_d u1, Polynomial_d u2,
|
|
Polynomial_d& u) const {
|
|
#ifndef NDEBUG
|
|
Polynomial_1 tmp,s_,t_;
|
|
tmp = CGAL::extended_euclidean_algorithm(m1,m2,s_,t_);
|
|
|
|
CGAL_precondition(tmp == Polynomial_1(1));
|
|
CGAL_precondition(s_ == s);
|
|
CGAL_precondition(t_ == t);
|
|
#endif
|
|
|
|
typename CGAL::Coercion_traits<Polynomial_1,Polynomial_d>::Cast cast;
|
|
typename Polynomial_traits_d<Polynomial_1>::Canonicalize canonicalize;
|
|
typename Polynomial_traits_d<Polynomial_d>::Pseudo_division_remainder
|
|
pseudo_remainder;
|
|
|
|
CGAL_precondition(u1.degree() < m1.degree() || u1.is_zero());
|
|
CGAL_precondition(u2.degree() < m2.degree() || u2.is_zero());
|
|
if(m1.degree() < m2.degree()){
|
|
Polynomial_d v = pseudo_remainder(cast(s)*(u2-u1),cast(canonicalize(m2)));
|
|
u = cast(m1)*v + u1;
|
|
}
|
|
else{
|
|
Polynomial_d v = pseudo_remainder(cast(t)*(u1-u2),cast(canonicalize(m1)));
|
|
u = cast(m2)*v + u2;
|
|
}
|
|
}
|
|
};
|
|
};
|
|
|
|
template< class Coefficient_ >
|
|
class Polynomial_traits_d_base_icoeff_algebraic_category<
|
|
Polynomial< Coefficient_ >, Field_with_sqrt_tag >
|
|
: public Polynomial_traits_d_base_icoeff_algebraic_category<
|
|
Polynomial< Coefficient_ >, Field_tag > {};
|
|
|
|
template< class Coefficient_ >
|
|
class Polynomial_traits_d_base_icoeff_algebraic_category<
|
|
Polynomial< Coefficient_ >, Field_with_kth_root_tag >
|
|
: public Polynomial_traits_d_base_icoeff_algebraic_category<
|
|
Polynomial< Coefficient_ >, Field_with_sqrt_tag > {};
|
|
|
|
template< class Coefficient_ >
|
|
class Polynomial_traits_d_base_icoeff_algebraic_category<
|
|
Polynomial< Coefficient_ >, Field_with_root_of_tag >
|
|
: public Polynomial_traits_d_base_icoeff_algebraic_category<
|
|
Polynomial< Coefficient_ >, Field_with_kth_root_tag > {};
|
|
|
|
// Base class for functors depending on the algebraic category of the
|
|
// Polynomial type
|
|
template< class Coefficient_, class PolynomialAlgebraicCategory >
|
|
class Polynomial_traits_d_base_polynomial_algebraic_category {
|
|
public:
|
|
typedef Null_functor Univariate_content;
|
|
typedef Null_functor Square_free_factorization;
|
|
};
|
|
|
|
// Specializations
|
|
template< class Coefficient_ >
|
|
class Polynomial_traits_d_base_polynomial_algebraic_category<
|
|
Polynomial< Coefficient_ >, Integral_domain_without_division_tag >
|
|
: public Polynomial_traits_d_base_polynomial_algebraic_category<
|
|
Polynomial< Coefficient_ >, Null_tag > {};
|
|
|
|
template< class Coefficient_ >
|
|
class Polynomial_traits_d_base_polynomial_algebraic_category<
|
|
Polynomial< Coefficient_ >, Integral_domain_tag >
|
|
: public Polynomial_traits_d_base_polynomial_algebraic_category<
|
|
Polynomial< Coefficient_ >, Integral_domain_without_division_tag > {};
|
|
|
|
template< class Coefficient_ >
|
|
class Polynomial_traits_d_base_polynomial_algebraic_category<
|
|
Polynomial< Coefficient_ >, Unique_factorization_domain_tag >
|
|
: public Polynomial_traits_d_base_polynomial_algebraic_category<
|
|
Polynomial< Coefficient_ >, Integral_domain_tag > {
|
|
CGAL_POLYNOMIAL_TRAITS_D_BASE_TYPEDEFS
|
|
|
|
public:
|
|
|
|
// Univariate_content
|
|
struct Univariate_content
|
|
: public Unary_function< Polynomial_d , Coefficient>{
|
|
Coefficient operator()(const Polynomial_d& p) const {
|
|
return p.content();
|
|
}
|
|
Coefficient operator()(Polynomial_d p, int i) const {
|
|
return typename PT::Swap()(p,i,PT::d-1).content();
|
|
}
|
|
};
|
|
|
|
// Square_free_factorization;
|
|
struct Square_free_factorization{
|
|
typedef int result_type;
|
|
|
|
template < class OutputIterator1, class OutputIterator2 >
|
|
int operator()(
|
|
const Polynomial_d& p,
|
|
OutputIterator1 fit,
|
|
OutputIterator2 mit) const {
|
|
return square_free_factorization( p, fit, mit );
|
|
}
|
|
|
|
template< class OutputIterator1, class OutputIterator2 >
|
|
int operator()( const Polynomial_d& p, OutputIterator1 fit,
|
|
OutputIterator2 mit, Innermost_coefficient& a ) {
|
|
if( p == Polynomial_d(0) ) {
|
|
a = Innermost_coefficient(0);
|
|
return 0;
|
|
}
|
|
a = CGAL::unit_part( typename Polynomial_traits_d< Polynomial_d >::Innermost_leading_coefficient()( p ) ) *
|
|
typename Polynomial_traits_d< Polynomial_d >::Multivariate_content()( p );
|
|
return square_free_factorization( p/Polynomial_d(a), fit, mit );
|
|
}
|
|
|
|
};
|
|
|
|
};
|
|
|
|
template< class Coefficient_ >
|
|
class Polynomial_traits_d_base_polynomial_algebraic_category<
|
|
Polynomial< Coefficient_ >, Euclidean_ring_tag >
|
|
: public Polynomial_traits_d_base_polynomial_algebraic_category<
|
|
Polynomial< Coefficient_ >, Unique_factorization_domain_tag > {};
|
|
|
|
|
|
// Polynomial_traits_d_base class connecting the two base classes which depend
|
|
// on the algebraic category of the innermost coefficient type and the poly-
|
|
// nomial type.
|
|
|
|
// First the general base class for the innermost coefficient
|
|
template< class InnermostCoefficient,
|
|
class ICoeffAlgebraicCategory, class PolynomialAlgebraicCategory >
|
|
class Polynomial_traits_d_base {
|
|
typedef InnermostCoefficient ICoeff;
|
|
public:
|
|
static const int d = 0;
|
|
|
|
typedef ICoeff Polynomial_d;
|
|
typedef ICoeff Coefficient;
|
|
typedef ICoeff Innermost_coefficient;
|
|
|
|
struct Degree
|
|
: public Unary_function< ICoeff , int > {
|
|
int operator()(const ICoeff&) const { return 0; }
|
|
};
|
|
struct Total_degree
|
|
: public Unary_function< ICoeff , int > {
|
|
int operator()(const ICoeff&) const { return 0; }
|
|
};
|
|
|
|
typedef Null_functor Construct_polynomial;
|
|
typedef Null_functor Get_coefficient;
|
|
typedef Null_functor Leading_coefficient;
|
|
typedef Null_functor Univariate_content;
|
|
typedef Null_functor Multivariate_content;
|
|
typedef Null_functor Shift;
|
|
typedef Null_functor Negate;
|
|
typedef Null_functor Invert;
|
|
typedef Null_functor Translate;
|
|
typedef Null_functor Translate_homogeneous;
|
|
typedef Null_functor Scale_homogeneous;
|
|
typedef Null_functor Derivative;
|
|
|
|
struct Is_square_free
|
|
: public Unary_function< ICoeff, bool > {
|
|
bool operator()( const ICoeff& ) const {
|
|
return true;
|
|
}
|
|
};
|
|
|
|
struct Make_square_free
|
|
: public Unary_function< ICoeff, ICoeff>{
|
|
ICoeff operator()( const ICoeff& x ) const {
|
|
if (CGAL::is_zero(x)) return x ;
|
|
else return ICoeff(1);
|
|
}
|
|
};
|
|
|
|
typedef Null_functor Square_free_factorization;
|
|
typedef Null_functor Pseudo_division;
|
|
typedef Null_functor Pseudo_division_remainder;
|
|
typedef Null_functor Pseudo_division_quotient;
|
|
|
|
struct Gcd_up_to_constant_factor
|
|
: public Binary_function< ICoeff, ICoeff, ICoeff >{
|
|
ICoeff operator()(const ICoeff& x, const ICoeff& y) const {
|
|
if (CGAL::is_zero(x) && CGAL::is_zero(y))
|
|
return ICoeff(0);
|
|
else
|
|
return ICoeff(1);
|
|
}
|
|
};
|
|
typedef Null_functor Integral_division_up_to_constant_factor;
|
|
struct Univariate_content_up_to_constant_factor
|
|
: public Unary_function< ICoeff, ICoeff >{
|
|
ICoeff operator()(const ICoeff& ) const {
|
|
return ICoeff(1);
|
|
}
|
|
};
|
|
|
|
typedef Null_functor Square_free_factorization_up_to_constant_factor;
|
|
typedef Null_functor Resultant;
|
|
typedef Null_functor Canonicalize;
|
|
typedef Null_functor Evaluate_homogeneous;
|
|
|
|
struct Innermost_leading_coefficient
|
|
:public Unary_function <ICoeff, ICoeff>{
|
|
ICoeff operator()(const ICoeff& x){return x;}
|
|
};
|
|
|
|
struct Degree_vector{
|
|
typedef Exponent_vector result_type;
|
|
typedef Coefficient argument_type;
|
|
|
|
// returns the exponent vector of inner_most_lcoeff.
|
|
result_type operator()(const Coefficient&){
|
|
return Exponent_vector();
|
|
}
|
|
};
|
|
|
|
struct Get_innermost_coefficient
|
|
: public Binary_function< ICoeff, Polynomial_d, Exponent_vector > {
|
|
|
|
ICoeff operator()( const Polynomial_d& p, Exponent_vector ev ) {
|
|
CGAL_precondition( ev.empty() );
|
|
return p;
|
|
}
|
|
|
|
};
|
|
|
|
struct Evaluate {
|
|
template< class Input_iterator >
|
|
ICoeff operator()( const Polynomial_d& p, Input_iterator, Input_iterator ) {
|
|
//std::cerr << p << std::endl;
|
|
return p;
|
|
}
|
|
};
|
|
|
|
};
|
|
|
|
// Evaluate_homogeneous_func for recursive homogeneous evaluation of a
|
|
// polynomial, used by Polynomial_traits_d_base for polynomials.
|
|
template< class Polynomial, int d = CGAL::Polynomial_traits_d< Polynomial>::d >
|
|
struct Evaluate_homogeneous_func;
|
|
|
|
template< class Polynomial >
|
|
struct Evaluate_homogeneous_func< Polynomial, 1 > {
|
|
typedef typename CGAL::Polynomial_traits_d< Polynomial > PT;
|
|
typedef typename PT::Coefficient Coefficient;
|
|
typedef typename PT::Innermost_coefficient ICoeff;
|
|
typedef typename CGAL::Polynomial_traits_d< Coefficient > PTC;
|
|
|
|
template< class Input_iterator >
|
|
ICoeff operator()( const Polynomial& p,
|
|
Input_iterator begin,
|
|
Input_iterator end,
|
|
int total_degree,
|
|
const ICoeff& v ) const {
|
|
--end;
|
|
CGAL_precondition( begin == end );
|
|
/* std::cerr << (*end) << ", " << v << ", " << total_degree << std::endl;
|
|
std::cerr << p << std::endl;*/
|
|
return p.evaluate_homogeneous( (*end), v, total_degree );
|
|
}
|
|
|
|
};
|
|
|
|
template< class Polynomial, int d >
|
|
struct Evaluate_homogeneous_func {
|
|
typedef typename CGAL::Polynomial_traits_d< Polynomial > PT;
|
|
typedef typename PT::Coefficient Coefficient;
|
|
typedef typename PT::Innermost_coefficient ICoeff;
|
|
typedef typename CGAL::Polynomial_traits_d< Coefficient > PTC;
|
|
|
|
template< class Input_iterator >
|
|
ICoeff operator()( const Polynomial& p,
|
|
Input_iterator begin,
|
|
Input_iterator end,
|
|
int total_degree,
|
|
const ICoeff& v ) const {
|
|
CGAL_precondition( begin != end );
|
|
//typename PT::Evaluate evaluate;
|
|
typename PT::Degree degree;
|
|
Evaluate_homogeneous_func< Coefficient > eval_hom;
|
|
--end;
|
|
|
|
std::vector< ICoeff > cv;
|
|
|
|
for( int i = 0; i <= degree(p); ++i ) {
|
|
cv.push_back( eval_hom( p[i], begin, end, total_degree - i, v ) );
|
|
}
|
|
|
|
return (CGAL::Polynomial< ICoeff >( cv.begin(), cv.end() )).evaluate((*end));
|
|
}
|
|
};
|
|
|
|
// Now the version for the polynomials with all functors provided by all polynomials
|
|
template< class Coefficient_,
|
|
class ICoeffAlgebraicCategory, class PolynomialAlgebraicCategory >
|
|
class Polynomial_traits_d_base< Polynomial< Coefficient_ >,
|
|
ICoeffAlgebraicCategory, PolynomialAlgebraicCategory >
|
|
: public Polynomial_traits_d_base_icoeff_algebraic_category<
|
|
Polynomial< Coefficient_ >, ICoeffAlgebraicCategory >,
|
|
public Polynomial_traits_d_base_polynomial_algebraic_category<
|
|
Polynomial< Coefficient_ >, PolynomialAlgebraicCategory > {
|
|
|
|
CGAL_POLYNOMIAL_TRAITS_D_BASE_TYPEDEFS
|
|
|
|
|
|
// We use our own Strict Weak Ordering predicate in order to avoid
|
|
// problems when calling sort for a Exponents_coeff_pair where the
|
|
// coeff type has no comparison operators available.
|
|
private:
|
|
struct Compare_exponents_coeff_pair
|
|
: public Binary_function< std::pair< Exponent_vector, Innermost_coefficient >,
|
|
std::pair< Exponent_vector, Innermost_coefficient >,
|
|
bool > {
|
|
bool operator()( const std::pair< Exponent_vector, Innermost_coefficient >& p1,
|
|
const std::pair< Exponent_vector, Innermost_coefficient >& p2 ) const {
|
|
// TODO: Precondition leads to an error within test_translate in Polynomial_traits_d test
|
|
//CGAL_precondition( p1.first != p2.first );
|
|
return p1.first < p2.first;
|
|
}
|
|
};
|
|
|
|
public:
|
|
|
|
//
|
|
// Functors as defined in the reference manual (with sometimes slightly
|
|
// extended functionality)
|
|
//
|
|
|
|
|
|
// Construct_polynomial;
|
|
struct Construct_polynomial {
|
|
|
|
typedef Polynomial_d result_type;
|
|
|
|
Polynomial_d operator()() const {
|
|
return Polynomial_d(0);
|
|
}
|
|
|
|
template <class T>
|
|
Polynomial_d operator()( T a ) const {
|
|
return Polynomial_d(a);
|
|
}
|
|
|
|
//! construct the constant polynomial a0
|
|
Polynomial_d operator() (const Coefficient& a0) const
|
|
{return Polynomial_d(a0);}
|
|
|
|
//! construct the polynomial a0 + a1*x
|
|
Polynomial_d operator() (
|
|
const Coefficient& a0, const Coefficient& a1) const
|
|
{return Polynomial_d(a0,a1);}
|
|
|
|
//! construct the polynomial a0 + a1*x + a2*x^2
|
|
Polynomial_d operator() (
|
|
const Coefficient& a0, const Coefficient& a1,
|
|
const Coefficient& a2) const
|
|
{return Polynomial_d(a0,a1,a2);}
|
|
|
|
//! construct the polynomial a0 + a1*x + ... + a3*x^3
|
|
Polynomial_d operator() (
|
|
const Coefficient& a0, const Coefficient& a1,
|
|
const Coefficient& a2, const Coefficient& a3) const
|
|
{return Polynomial_d(a0,a1,a2,a3);}
|
|
|
|
//! construct the polynomial a0 + a1*x + ... + a4*x^4
|
|
Polynomial_d operator() (
|
|
const Coefficient& a0, const Coefficient& a1,
|
|
const Coefficient& a2, const Coefficient& a3,
|
|
const Coefficient& a4) const
|
|
{return Polynomial_d(a0,a1,a2,a3,a4);}
|
|
|
|
//! construct the polynomial a0 + a1*x + ... + a5*x^5
|
|
Polynomial_d operator() (
|
|
const Coefficient& a0, const Coefficient& a1,
|
|
const Coefficient& a2, const Coefficient& a3,
|
|
const Coefficient& a4, const Coefficient& a5) const
|
|
{return Polynomial_d(a0,a1,a2,a3,a4,a5);}
|
|
|
|
//! construct the polynomial a0 + a1*x + ... + a6*x^6
|
|
Polynomial_d operator() (
|
|
const Coefficient& a0, const Coefficient& a1,
|
|
const Coefficient& a2, const Coefficient& a3,
|
|
const Coefficient& a4, const Coefficient& a5,
|
|
const Coefficient& a6) const
|
|
{return Polynomial_d(a0,a1,a2,a3,a4,a5,a6);}
|
|
|
|
//! construct the polynomial a0 + a1*x + ... + a7*x^7
|
|
Polynomial_d operator() (
|
|
const Coefficient& a0, const Coefficient& a1,
|
|
const Coefficient& a2, const Coefficient& a3,
|
|
const Coefficient& a4, const Coefficient& a5,
|
|
const Coefficient& a6, const Coefficient& a7) const
|
|
{return Polynomial_d(a0,a1,a2,a3,a4,a5,a6,a7);}
|
|
|
|
//! construct the polynomial a0 + a1*x + ... + a8*x^8
|
|
Polynomial_d operator() (
|
|
const Coefficient& a0, const Coefficient& a1,
|
|
const Coefficient& a2, const Coefficient& a3,
|
|
const Coefficient& a4, const Coefficient& a5,
|
|
const Coefficient& a6, const Coefficient& a7,
|
|
const Coefficient& a8) const
|
|
{return Polynomial_d(a0,a1,a2,a3,a4,a5,a6,a7,a8);}
|
|
|
|
template< class Input_iterator >
|
|
inline
|
|
Polynomial_d construct(
|
|
Input_iterator begin,
|
|
Input_iterator end ,
|
|
Tag_true) const {
|
|
return Polynomial_d(begin,end);
|
|
}
|
|
|
|
template< class Input_iterator >
|
|
inline
|
|
Polynomial_d construct(
|
|
Input_iterator begin,
|
|
Input_iterator end ,
|
|
Tag_false) const {
|
|
std::sort(begin,end,Compare_exponents_coeff_pair());
|
|
return Create_polynomial_from_monom_rep< Coefficient >()
|
|
( begin, end );
|
|
}
|
|
|
|
|
|
template< class Input_iterator >
|
|
Polynomial_d
|
|
operator()( Input_iterator begin, Input_iterator end ) const {
|
|
if(begin == end ) return Polynomial_d(0);
|
|
typedef typename Input_iterator::value_type value_type;
|
|
typedef Boolean_tag<boost::is_same<value_type,Coefficient>::value>
|
|
Is_coeff;
|
|
return construct(begin,end,Is_coeff());
|
|
}
|
|
|
|
private:
|
|
public:
|
|
|
|
template< class T >
|
|
class Create_polynomial_from_monom_rep {
|
|
public:
|
|
template <class Monom_rep_iterator>
|
|
Polynomial_d operator()(
|
|
Monom_rep_iterator begin,
|
|
Monom_rep_iterator end) const {
|
|
|
|
std::vector< Innermost_coefficient > coefficients;
|
|
for(Monom_rep_iterator it = begin; it != end; it++){
|
|
while( it->first[0] > (int) coefficients.size() ){
|
|
coefficients.push_back(Innermost_coefficient(0));
|
|
}
|
|
coefficients.push_back(it->second);
|
|
}
|
|
return Polynomial_d(coefficients.begin(),coefficients.end());
|
|
}
|
|
};
|
|
template< class T >
|
|
class Create_polynomial_from_monom_rep< Polynomial < T > > {
|
|
public:
|
|
template <class Monom_rep_iterator>
|
|
Polynomial_d operator()(
|
|
Monom_rep_iterator begin,
|
|
Monom_rep_iterator end) const {
|
|
//std::cout << " ------\n " << std::endl;
|
|
|
|
typedef Polynomial_traits_d<Coefficient> PT;
|
|
typename PT::Construct_polynomial construct;
|
|
|
|
BOOST_STATIC_ASSERT(PT::d != 0); // Coefficient is a Polynomial
|
|
std::vector<Coefficient> coefficients;
|
|
|
|
Monom_rep_iterator it = begin;
|
|
while(it != end){
|
|
int current_exp = it->first[PT::d];
|
|
//std::cout <<"current_exp: " << current_exp << std::endl;
|
|
// fill up with zeros until current exp is reached
|
|
while( (int) coefficients.size() < current_exp){
|
|
coefficients.push_back(Coefficient(0));
|
|
//std::cout <<" insert "<< std::endl;
|
|
}
|
|
// collect all coeffs for this exp
|
|
Monom_rep monoms;
|
|
while( it != end && it->first[PT::d] == current_exp ){
|
|
Exponent_vector ev = it->first;
|
|
ev.pop_back();
|
|
monoms.push_back( Exponents_coeff_pair(ev,it->second));
|
|
it++;
|
|
}
|
|
coefficients.push_back(
|
|
construct(monoms.begin(), monoms.end()));
|
|
}
|
|
//std::cout << " ------\n " << std::endl;
|
|
return Polynomial_d(coefficients.begin(),coefficients.end());
|
|
}
|
|
};
|
|
};
|
|
|
|
// Get_coefficient;
|
|
struct Get_coefficient
|
|
: public Binary_function<Polynomial_d, int, Coefficient > {
|
|
|
|
Coefficient operator()( const Polynomial_d& p, int i) const {
|
|
CGAL_precondition( i >= 0 );
|
|
typename PT::Degree degree;
|
|
if( i > degree(p) )
|
|
return Coefficient(0);
|
|
return p[i];
|
|
}
|
|
|
|
};
|
|
|
|
// Get_innermost_coefficient;
|
|
struct Get_innermost_coefficient
|
|
: public Binary_function< Polynomial_d, Exponent_vector, Innermost_coefficient > {
|
|
|
|
Innermost_coefficient operator()( const Polynomial_d& p, Exponent_vector ev ) const {
|
|
CGAL_precondition( !ev.empty() );
|
|
typename PTC::Get_innermost_coefficient gic;
|
|
typename PT::Get_coefficient gc;
|
|
int exponent = ev.back();
|
|
ev.pop_back();
|
|
return gic( gc( p, exponent ), ev );
|
|
};
|
|
|
|
};
|
|
|
|
// Swap;
|
|
// Swap variable x_i with x_j
|
|
struct Swap {
|
|
typedef Polynomial_d result_type;
|
|
typedef Polynomial_d first_argument_type;
|
|
typedef int second_argument_type;
|
|
typedef int third_argument_type;
|
|
typedef Arity_tag< 3 > Arity;
|
|
|
|
public:
|
|
|
|
Polynomial_d operator()(const Polynomial_d& p, int i, int j ) const {
|
|
//std::cout << i <<" " << j << " : " ;
|
|
CGAL_precondition(0 <= i && i < d);
|
|
CGAL_precondition(0 <= j && j < d);
|
|
typedef std::pair< Exponent_vector, Innermost_coefficient >
|
|
Exponents_coeff_pair;
|
|
typedef std::vector< Exponents_coeff_pair > Monom_rep;
|
|
Get_monom_representation gmr;
|
|
typename Construct_polynomial::template Create_polynomial_from_monom_rep< Coefficient > construct;
|
|
Monom_rep mon_rep;
|
|
gmr( p, std::back_inserter( mon_rep ) );
|
|
for( typename Monom_rep::iterator it = mon_rep.begin();
|
|
it != mon_rep.end();
|
|
++it ) {
|
|
std::swap(it->first[i],it->first[j]);
|
|
// it->first.swap( i, j );
|
|
}
|
|
std::sort( mon_rep.begin(), mon_rep.end(), Compare_exponents_coeff_pair() );
|
|
return construct( mon_rep.begin(), mon_rep.end() );
|
|
}
|
|
};
|
|
|
|
// Move;
|
|
// move variable x_i to position of x_j
|
|
// order of other variables remains
|
|
// default j = d makes x_i the othermost variable
|
|
struct Move {
|
|
typedef Polynomial_d result_type;
|
|
typedef Polynomial_d first_argument_type;
|
|
typedef int second_argument_type;
|
|
typedef int third_argument_type;
|
|
typedef Arity_tag< 3 > Arity;
|
|
|
|
Polynomial_d operator()(const Polynomial_d& p, int i, int j = (d-1) ) const {
|
|
//std::cout << x <<" " << y << " : " ;
|
|
CGAL_precondition(0 <= i && i < d);
|
|
CGAL_precondition(0 <= j && j < d);
|
|
typedef std::pair< Exponent_vector, Innermost_coefficient >
|
|
Exponents_coeff_pair;
|
|
typedef std::vector< Exponents_coeff_pair > Monom_rep;
|
|
Get_monom_representation gmr;
|
|
Construct_polynomial construct;
|
|
Monom_rep mon_rep;
|
|
gmr( p, std::back_inserter( mon_rep ) );
|
|
for( typename Monom_rep::iterator it = mon_rep.begin();
|
|
it != mon_rep.end();
|
|
++it ) {
|
|
// this is as good as std::rotate since it uses swap also
|
|
if (i < j)
|
|
for( int k = i; k < j; k++ )
|
|
std::swap(it->first[k],it->first[k+1]);
|
|
else
|
|
for( int k = i; k > j; k-- )
|
|
std::swap(it->first[k],it->first[k-1]);
|
|
|
|
}
|
|
std::sort( mon_rep.begin(), mon_rep.end(),Compare_exponents_coeff_pair());
|
|
return construct( mon_rep.begin(), mon_rep.end() );
|
|
}
|
|
};
|
|
|
|
// Degree;
|
|
struct Degree : public Unary_function< Polynomial_d , int >{
|
|
int operator()(const Polynomial_d& p, int i = (d-1)) const {
|
|
if (i == (d-1)) return p.degree();
|
|
else return Swap()(p,i,d-1).degree();
|
|
}
|
|
};
|
|
|
|
// Total_degree;
|
|
struct Total_degree : public Unary_function< Polynomial_d , int >{
|
|
int operator()(const Polynomial_d& p) const {
|
|
typedef Polynomial_traits_d<Coefficient> COEFF_POLY_TRAITS;
|
|
typename COEFF_POLY_TRAITS::Total_degree total_degree;
|
|
Degree degree;
|
|
CGAL_precondition( degree(p) >= 0);
|
|
|
|
int result = 0;
|
|
for(int i = 0; i <= degree(p) ; i++){
|
|
if( ! CGAL::is_zero( p[i]) )
|
|
result = std::max(result , total_degree(p[i]) + i );
|
|
}
|
|
return result;
|
|
}
|
|
};
|
|
|
|
// Leading_coefficient;
|
|
struct Leading_coefficient
|
|
: public Unary_function< Polynomial_d , Coefficient>{
|
|
Coefficient operator()(const Polynomial_d& p) const {
|
|
return p.lcoeff();
|
|
}
|
|
Coefficient operator()(Polynomial_d p, int i) const {
|
|
return Swap()(p,i,PT::d-1).lcoeff();
|
|
}
|
|
};
|
|
|
|
// Innermost_leading_coefficient;
|
|
struct Innermost_leading_coefficient
|
|
: public Unary_function< Polynomial_d , Innermost_coefficient>{
|
|
Innermost_coefficient
|
|
operator()(const Polynomial_d& p) const {
|
|
typename PTC::Innermost_leading_coefficient ilcoeff;
|
|
typename PT::Leading_coefficient lcoeff;
|
|
return ilcoeff(lcoeff(p));
|
|
}
|
|
};
|
|
|
|
// Canonicalize;
|
|
struct Canonicalize
|
|
: public Unary_function<Polynomial_d, Polynomial_d>{
|
|
Polynomial_d
|
|
operator()( const Polynomial_d& p ) const {
|
|
return CGAL::CGALi::canonicalize_polynomial(p);
|
|
}
|
|
};
|
|
|
|
// Derivative;
|
|
struct Derivative
|
|
: public Unary_function<Polynomial_d, Polynomial_d>{
|
|
Polynomial_d
|
|
operator()(Polynomial_d p, int i = (d-1)) const {
|
|
if (i == (d-1) ){
|
|
p.diff();
|
|
}else{
|
|
Swap swap;
|
|
p = swap(p,i,d-1);
|
|
p.diff();
|
|
p = swap(p,i,d-1);
|
|
}
|
|
return p;
|
|
}
|
|
};
|
|
|
|
// Evaluate;
|
|
struct Evaluate
|
|
:public Unary_function<Polynomial_d,Innermost_coefficient>{
|
|
Coefficient
|
|
operator()(const Polynomial_d& p, Innermost_coefficient x, int i = (d-1))
|
|
const {
|
|
if(i == (d-1) )
|
|
return p.evaluate(x);
|
|
else{
|
|
return Move()(p,i).evaluate(x);
|
|
}
|
|
}
|
|
|
|
template< class Input_iterator >
|
|
Innermost_coefficient operator()( const Polynomial_d& p, Input_iterator begin, Input_iterator end ) const {
|
|
CGAL_precondition( begin != end );
|
|
|
|
typename PT::Evaluate evaluatePoly;
|
|
typename PTC::Evaluate evaluateCoeff;
|
|
--end;
|
|
return evaluateCoeff( evaluatePoly( p, (*end) ), begin, end );
|
|
}
|
|
};
|
|
|
|
// Evaluate_homogeneous;
|
|
struct Evaluate_homogeneous{
|
|
typedef Coefficient result_type;
|
|
typedef Polynomial_d first_argument_type;
|
|
typedef Innermost_coefficient second_argument_type;
|
|
typedef Innermost_coefficient third_argument_type;
|
|
typedef Arity_tag< 3 > Arity;
|
|
|
|
Coefficient
|
|
operator()(
|
|
const Polynomial_d& p,
|
|
Innermost_coefficient a,
|
|
Innermost_coefficient b,
|
|
int i = (PT::d-1) ) const {
|
|
if (i == (d-1) )
|
|
return p.evaluate_homogeneous(a,b);
|
|
else
|
|
return Move()(p,i,PT::d-1).evaluate_homogeneous(a,b);
|
|
}
|
|
|
|
template< class Input_iterator >
|
|
Innermost_coefficient operator()( const Polynomial_d & p,
|
|
Input_iterator begin,
|
|
Input_iterator end ) const {
|
|
typename PT::Total_degree total_degree;
|
|
typename PT::Evaluate_homogeneous eval_hom;
|
|
return eval_hom( p, begin, end, total_degree(p) );
|
|
}
|
|
|
|
template< class Input_iterator >
|
|
Innermost_coefficient operator()( const Polynomial_d& p,
|
|
Input_iterator begin,
|
|
Input_iterator end,
|
|
int total_degree ) const {
|
|
--end;
|
|
Evaluate_homogeneous_func< Polynomial_d > eval_hom;
|
|
return eval_hom( p, begin, end, total_degree, (*end) );
|
|
}
|
|
|
|
};
|
|
|
|
// Is_zero_at;
|
|
struct Is_zero_at {
|
|
typedef bool result_type;
|
|
|
|
template< class Input_iterator >
|
|
bool operator()( const Polynomial_d& p, Input_iterator begin, Input_iterator end ) const {
|
|
typename PT::Evaluate evaluate;
|
|
return( CGAL::is_zero( evaluate( p, begin, end ) ) );
|
|
}
|
|
};
|
|
|
|
// Is_zero_at_homogeneous;
|
|
struct Is_zero_at_homogeneous {
|
|
typedef bool result_type;
|
|
|
|
template< class Input_iterator >
|
|
bool operator()( const Polynomial_d& p, Input_iterator begin, Input_iterator end ) const {
|
|
typename PT::Evaluate_homogeneous evaluate_homogeneous;
|
|
return( CGAL::is_zero( evaluate_homogeneous( p, begin, end ) ) );
|
|
}
|
|
};
|
|
|
|
// Sign_at;
|
|
struct Sign_at {
|
|
typedef Sign result_type;
|
|
|
|
template< class Input_iterator >
|
|
Sign operator()( const Polynomial_d& p, Input_iterator begin, Input_iterator end ) const {
|
|
typename PT::Evaluate evaluate;
|
|
return CGAL::sign( evaluate( p, begin, end ) );
|
|
}
|
|
};
|
|
|
|
// Sign_at_homogeneous;
|
|
struct Sign_at_homogeneous {
|
|
typedef Sign result_type;
|
|
|
|
template< class Input_iterator >
|
|
Sign operator()( const Polynomial_d& p, Input_iterator begin, Input_iterator end ) const {
|
|
typename PT::Evaluate_homogeneous evaluate_homogeneous;
|
|
return CGAL::sign( evaluate_homogeneous( p, begin, end ) );
|
|
}
|
|
};
|
|
|
|
// Compare;
|
|
struct Compare
|
|
: public Binary_function< Comparison_result, Polynomial_d, Polynomial_d > {
|
|
|
|
Comparison_result operator()( const Polynomial_d& p1, const Polynomial_d& p2 ) const {
|
|
return p1.compare( p2 );
|
|
}
|
|
};
|
|
|
|
//
|
|
// This is going to be in PolynomialToolBox
|
|
//
|
|
struct Coefficient_begin
|
|
: public Unary_function< Polynomial_d, Coefficient_iterator > {
|
|
Coefficient_iterator
|
|
operator () (const Polynomial_d& p) { return p.begin(); }
|
|
};
|
|
struct Coefficient_end
|
|
: public Unary_function< Polynomial_d, Coefficient_iterator > {
|
|
Coefficient_iterator
|
|
operator () (const Polynomial_d& p) { return p.end(); }
|
|
};
|
|
|
|
struct Innermost_coefficient_begin
|
|
: public Unary_function< Polynomial_d, Innermost_coefficient_iterator > {
|
|
Innermost_coefficient_iterator
|
|
operator () (const Polynomial_d& p) {
|
|
return typename Coefficient_flattening::Flatten()(p.end(),p.begin());
|
|
}
|
|
};
|
|
|
|
struct Innermost_coefficient_end
|
|
: public Unary_function< Polynomial_d, Innermost_coefficient_iterator > {
|
|
Innermost_coefficient_iterator
|
|
operator () (const Polynomial_d& p) {
|
|
return typename Coefficient_flattening::Flatten()(p.end(),p.end());
|
|
}
|
|
};
|
|
|
|
// Is_square_free;
|
|
struct Is_square_free
|
|
: public Unary_function< Polynomial_d, bool >{
|
|
bool operator()( const Polynomial_d& p ) const {
|
|
if( !CGALi::may_have_multiple_factor( p ) )
|
|
return true;
|
|
|
|
Univariate_content_up_to_constant_factor ucontent_utcf;
|
|
Integral_division_up_to_constant_factor idiv_utcf;
|
|
Derivative diff;
|
|
|
|
Coefficient content = ucontent_utcf( p );
|
|
typename PTC::Is_square_free isf;
|
|
|
|
if( !isf( content ) )
|
|
return false;
|
|
|
|
Polynomial_d regular_part = idiv_utcf( p, Polynomial_d( content ) );
|
|
|
|
Polynomial_d g = gcd_utcf(regular_part,diff(regular_part));
|
|
return ( g.degree() == 0 );
|
|
}
|
|
};
|
|
|
|
|
|
// Make_square_free;
|
|
struct Make_square_free
|
|
: public Unary_function< Polynomial_d, Polynomial_d >{
|
|
Polynomial_d
|
|
operator()(const Polynomial_d& p) const {
|
|
if (CGAL::is_zero(p)) return p;
|
|
Univariate_content_up_to_constant_factor ucontent_utcf;
|
|
Integral_division_up_to_constant_factor idiv_utcf;
|
|
Derivative diff;
|
|
typename PTC::Make_square_free msf;
|
|
|
|
Coefficient content = ucontent_utcf(p);
|
|
Polynomial_d result = Polynomial_d(msf(content));
|
|
|
|
Polynomial_d regular_part = idiv_utcf(p,Polynomial_d(content));
|
|
Polynomial_d g = gcd_utcf(regular_part,diff(regular_part));
|
|
|
|
|
|
result *= idiv_utcf(regular_part,g);
|
|
return Canonicalize()(result);
|
|
|
|
}
|
|
};
|
|
|
|
// Pseudo_division;
|
|
struct Pseudo_division {
|
|
typedef Polynomial_d result_type;
|
|
void
|
|
operator()(
|
|
const Polynomial_d& f, const Polynomial_d& g,
|
|
Polynomial_d& q, Polynomial_d& r, Coefficient& D) const {
|
|
Polynomial_d::pseudo_division(f,g,q,r,D);
|
|
}
|
|
};
|
|
|
|
// Pseudo_division_quotient;
|
|
struct Pseudo_division_quotient
|
|
:public Binary_function<Polynomial_d, Polynomial_d, Polynomial_d> {
|
|
|
|
Polynomial_d
|
|
operator()(const Polynomial_d& f, const Polynomial_d& g) const {
|
|
Polynomial_d q,r;
|
|
Coefficient D;
|
|
Polynomial_d::pseudo_division(f,g,q,r,D);
|
|
return q;
|
|
}
|
|
};
|
|
|
|
// Pseudo_division_remainder;
|
|
struct Pseudo_division_remainder
|
|
:public Binary_function<Polynomial_d, Polynomial_d, Polynomial_d> {
|
|
|
|
Polynomial_d
|
|
operator()(const Polynomial_d& f, const Polynomial_d& g) const {
|
|
Polynomial_d q,r;
|
|
Coefficient D;
|
|
Polynomial_d::pseudo_division(f,g,q,r,D);
|
|
return r;
|
|
}
|
|
};
|
|
|
|
// Gcd_up_to_constant_factor;
|
|
struct Gcd_up_to_constant_factor
|
|
:public Binary_function<Polynomial_d, Polynomial_d, Polynomial_d> {
|
|
Polynomial_d
|
|
operator()(const Polynomial_d& p, const Polynomial_d& q) const {
|
|
if (CGAL::is_zero(p) && CGAL::is_zero(q))
|
|
return Polynomial_d(0);
|
|
return CGALi::gcd_utcf(p,q);
|
|
}
|
|
};
|
|
|
|
// Integral_division_up_to_constant_factor;
|
|
struct Integral_division_up_to_constant_factor
|
|
:public Binary_function<Polynomial_d, Polynomial_d, Polynomial_d> {
|
|
Polynomial_d
|
|
operator()(const Polynomial_d& p, const Polynomial_d& q) const {
|
|
typedef Innermost_coefficient IC;
|
|
|
|
typename PT::Construct_polynomial construct;
|
|
typename PT::Innermost_leading_coefficient ilcoeff;
|
|
typename PT::Innermost_coefficient_begin begin;
|
|
typename PT::Innermost_coefficient_end end;
|
|
typedef Algebraic_extension_traits<Innermost_coefficient> AET;
|
|
typename AET::Denominator_for_algebraic_integers dfai;
|
|
typename AET::Normalization_factor nfac;
|
|
|
|
|
|
IC ilcoeff_q = ilcoeff(q);
|
|
// this factor is needed in case IC is an Algebraic extension
|
|
IC dfai_q = dfai(begin(q), end(q));
|
|
// make dfai_q a 'scalar'
|
|
ilcoeff_q *= dfai_q * nfac(dfai_q);
|
|
|
|
Polynomial_d result = (p * construct(ilcoeff_q)) / q;
|
|
|
|
return Canonicalize()(result);
|
|
}
|
|
};
|
|
|
|
// Univariate_content_up_to_constant_factor;
|
|
struct Univariate_content_up_to_constant_factor
|
|
:public Unary_function<Polynomial_d, Coefficient> {
|
|
Coefficient
|
|
operator()(const Polynomial_d& p) const {
|
|
typename PTC::Gcd_up_to_constant_factor gcd_utcf;
|
|
|
|
if(CGAL::is_zero(p)) return Coefficient(0);
|
|
if(PT::d == 1) return Coefficient(1);
|
|
|
|
Coefficient result(0);
|
|
for(typename Polynomial_d::const_iterator it = p.begin();
|
|
it != p.end();
|
|
it++){
|
|
result = gcd_utcf(*it,result);
|
|
}
|
|
return result;
|
|
|
|
}
|
|
};
|
|
|
|
// Square_free_factorization_up_to_constant_factor;
|
|
struct Square_free_factorization_up_to_constant_factor {
|
|
typedef int result_type;
|
|
private:
|
|
typedef Coefficient Coeff;
|
|
typedef Innermost_coefficient ICoeff;
|
|
|
|
// rsqff_utcf computes the sqff recursively for Coeff
|
|
// end of recursion: ICoeff
|
|
template < class OutputIterator1, class OutputIterator2 >
|
|
int rsqff_utcf (ICoeff ,
|
|
OutputIterator1 ,
|
|
OutputIterator2 ) const{
|
|
return 0;
|
|
}
|
|
template < class OutputIterator1, class OutputIterator2 >
|
|
int rsqff_utcf (
|
|
typename First_if_different<Coeff,ICoeff>::Type c,
|
|
OutputIterator1 fit,
|
|
OutputIterator2 mit) const {
|
|
typename PTC::Square_free_factorization_up_to_constant_factor sqff;
|
|
std::vector<Coefficient> factors;
|
|
int n = sqff(c, std::back_inserter(factors), mit);
|
|
for(int i = 0; i < (int)factors.size(); i++){
|
|
*fit++=Polynomial_d(factors[i]);
|
|
}
|
|
return n;
|
|
}
|
|
public:
|
|
template < class OutputIterator1, class OutputIterator2 >
|
|
int operator()(
|
|
Polynomial_d p,
|
|
OutputIterator1 fit,
|
|
OutputIterator2 mit) const {
|
|
|
|
if (CGAL::is_zero(p)) return 0;
|
|
|
|
Univariate_content_up_to_constant_factor ucontent_utcf;
|
|
Integral_division_up_to_constant_factor idiv_utcf;
|
|
Coefficient c = ucontent_utcf(p);
|
|
p = idiv_utcf( p , Polynomial_d(c));
|
|
int n = square_free_factorization_utcf(p,fit,mit);
|
|
if (Total_degree()(c) > 0)
|
|
return rsqff_utcf(c,fit,mit)+n;
|
|
else
|
|
return n;
|
|
}
|
|
};
|
|
|
|
// Shift;
|
|
struct Shift
|
|
: public Unary_function< Polynomial_d, Polynomial_d >{
|
|
Polynomial_d
|
|
operator()(const Polynomial_d& p, int e, int i = PT::d) const {
|
|
Construct_polynomial construct;
|
|
Get_monom_representation gmr;
|
|
Monom_rep monom_rep;
|
|
gmr(p,std::back_inserter(monom_rep));
|
|
for(typename Monom_rep::iterator it = monom_rep.begin();
|
|
it != monom_rep.end();
|
|
it++){
|
|
it->first[i-1]+=e;
|
|
}
|
|
return construct(monom_rep.begin(), monom_rep.end());
|
|
}
|
|
};
|
|
|
|
// Negate;
|
|
struct Negate
|
|
: public Unary_function< Polynomial_d, Polynomial_d >{
|
|
|
|
Polynomial_d operator()(const Polynomial_d& p, int i = (d-1)) const {
|
|
Construct_polynomial construct;
|
|
Get_monom_representation gmr;
|
|
Monom_rep monom_rep;
|
|
gmr(p,std::back_inserter(monom_rep));
|
|
for(typename Monom_rep::iterator it = monom_rep.begin();
|
|
it != monom_rep.end();
|
|
it++){
|
|
if (it->first[i] % 2 != 0)
|
|
it->second = - it->second;
|
|
}
|
|
return construct(monom_rep.begin(), monom_rep.end());
|
|
}
|
|
};
|
|
|
|
// Invert;
|
|
struct Invert
|
|
: public Unary_function< Polynomial_d , Polynomial_d >{
|
|
Polynomial_d operator()(Polynomial_d p, int i = (PT::d-1)) const {
|
|
if (i == (d-1)){
|
|
p.reversal();
|
|
}else{
|
|
p = Swap()(p,i,PT::d-1);
|
|
p.reversal();
|
|
p = Swap()(p,i,PT::d-1);
|
|
}
|
|
return p ;
|
|
}
|
|
};
|
|
|
|
// Translate;
|
|
struct Translate
|
|
: public Binary_function< Polynomial_d , Polynomial_d,
|
|
Innermost_coefficient >{
|
|
Polynomial_d
|
|
operator()(
|
|
Polynomial_d p,
|
|
const Innermost_coefficient& c,
|
|
int i = (d-1))
|
|
const {
|
|
if (i == (d-1) ){
|
|
p.translate(Coefficient(c));
|
|
}else{
|
|
Swap swap;
|
|
p = swap(p,i,d-1);
|
|
p.translate(Coefficient(c));
|
|
p = swap(p,i,d-1);
|
|
}
|
|
return p;
|
|
}
|
|
};
|
|
|
|
// Translate_homogeneous;
|
|
struct Translate_homogeneous{
|
|
typedef Polynomial_d result_type;
|
|
typedef Polynomial_d first_argument_type;
|
|
typedef Innermost_coefficient second_argument_type;
|
|
typedef Innermost_coefficient third_argument_type;
|
|
|
|
Polynomial_d
|
|
operator()(Polynomial_d p,
|
|
const Innermost_coefficient& a,
|
|
const Innermost_coefficient& b,
|
|
int i = (d-1) ) const {
|
|
if (i == (d-1) ){
|
|
p.translate(Coefficient(a), Coefficient(b) );
|
|
}else{
|
|
Swap swap;
|
|
p = swap(p,i,d-1);
|
|
p.translate(Coefficient(a), Coefficient(b));
|
|
p = swap(p,i,d-1);
|
|
}
|
|
return p;
|
|
}
|
|
};
|
|
|
|
// Scale;
|
|
struct Scale
|
|
: public Binary_function< Polynomial_d, Innermost_coefficient, Polynomial_d > {
|
|
|
|
Polynomial_d operator()( Polynomial_d p, const Innermost_coefficient& c,
|
|
int i = (PT::d-1) ) {
|
|
typename PT::Scale_homogeneous scale_homogeneous;
|
|
|
|
return scale_homogeneous( p, c, Innermost_coefficient(1), i );
|
|
}
|
|
|
|
};
|
|
|
|
// Scale_homogeneous;
|
|
struct Scale_homogeneous{
|
|
typedef Polynomial_d result_type;
|
|
typedef Polynomial_d first_argument_type;
|
|
typedef Innermost_coefficient second_argument_type;
|
|
typedef Innermost_coefficient third_argument_type;
|
|
|
|
Polynomial_d
|
|
operator()(
|
|
Polynomial_d p,
|
|
const Innermost_coefficient& a,
|
|
const Innermost_coefficient& b,
|
|
int i = (d-1) ) const {
|
|
CGAL_precondition( ! CGAL::is_zero(b) );
|
|
|
|
if (i == (d-1) ) p = Swap()(p,i,d-1);
|
|
|
|
if(CGAL::is_one(b))
|
|
p.scale_up(Coefficient(a));
|
|
else
|
|
if(CGAL::is_one(a))
|
|
p.scale_down(Coefficient(b));
|
|
else
|
|
p.scale(Coefficient(a), Coefficient(b) );
|
|
|
|
if (i == (d-1) ) p = Swap()(p,i,d-1);
|
|
|
|
return p;
|
|
}
|
|
};
|
|
|
|
// Resultant;
|
|
struct Resultant
|
|
: public Binary_function<Polynomial_d, Polynomial_d, Coefficient>{
|
|
|
|
Coefficient
|
|
operator()(
|
|
const Polynomial_d& p,
|
|
const Polynomial_d& q,
|
|
int i = (d-1) ) const {
|
|
if(i == (d-1) )
|
|
return resultant(p,q);
|
|
else
|
|
return resultant(Move()(p,i),Move()(q,i));
|
|
}
|
|
};
|
|
|
|
|
|
// polynomial subresultants;
|
|
struct Polynomial_subresultants {
|
|
|
|
template<typename OutputIterator>
|
|
OutputIterator operator()(
|
|
const Polynomial_d& p,
|
|
const Polynomial_d& q,
|
|
OutputIterator out,
|
|
int i = (d-1) ) const {
|
|
if(i == (d-1) )
|
|
return CGAL::CGALi::polynomial_subresultants(p,q,out);
|
|
else
|
|
return CGAL::CGALi::polynomial_subresultants(Move()(p,i),
|
|
Move()(q,i),
|
|
out);
|
|
}
|
|
};
|
|
|
|
// principal subresultants;
|
|
struct Principal_subresultants {
|
|
|
|
template<typename OutputIterator>
|
|
OutputIterator operator()(
|
|
const Polynomial_d& p,
|
|
const Polynomial_d& q,
|
|
OutputIterator out,
|
|
int i = (d-1) ) const {
|
|
if(i == (d-1) )
|
|
return CGAL::CGALi::principal_subresultants(p,q,out);
|
|
else
|
|
return CGAL::CGALi::principal_subresultants(Move()(p,i),
|
|
Move()(q,i),
|
|
out);
|
|
}
|
|
};
|
|
|
|
// Sturm-Habicht sequence
|
|
struct Sturm_habicht_sequence {
|
|
|
|
template<typename OutputIterator>
|
|
OutputIterator operator()(
|
|
const Polynomial_d& p,
|
|
OutputIterator out,
|
|
int i = (d-1) ) const {
|
|
if(i == (d-1) )
|
|
return CGAL::CGALi::sturm_habicht_sequence(p,out);
|
|
else
|
|
return CGAL::CGALi::sturm_habicht_sequence(Move()(p,i),
|
|
out);
|
|
}
|
|
};
|
|
|
|
// Sturm-Habicht sequence with cofactors
|
|
struct Sturm_habicht_sequence_with_cofactors {
|
|
template<typename OutputIterator1,
|
|
typename OutputIterator2,
|
|
typename OutputIterator3>
|
|
OutputIterator1 operator()(
|
|
const Polynomial_d& p,
|
|
OutputIterator1 out_stha,
|
|
OutputIterator2 out_f,
|
|
OutputIterator3 out_fx,
|
|
int i = (d-1) ) const {
|
|
if(i == (d-1) )
|
|
return CGAL::CGALi::sturm_habicht_sequence_with_cofactors
|
|
(p,out_stha,out_f,out_fx);
|
|
else
|
|
return CGAL::CGALi::sturm_habicht_sequence_with_cofactors
|
|
(Move()(p,i),out_stha,out_f,out_fx);
|
|
}
|
|
};
|
|
|
|
// Principal Sturm-Habicht sequence
|
|
struct Principal_sturm_habicht_sequence {
|
|
|
|
template<typename OutputIterator>
|
|
OutputIterator operator()(
|
|
const Polynomial_d& p,
|
|
OutputIterator out,
|
|
int i = (d-1) ) const {
|
|
if(i == (d-1) )
|
|
return CGAL::CGALi::principal_sturm_habicht_sequence(p,out);
|
|
else
|
|
return CGAL::CGALi::principal_sturm_habicht_sequence
|
|
(Move()(p,i),out);
|
|
}
|
|
};
|
|
|
|
|
|
//
|
|
// Functors not mentioned in the reference manual
|
|
//
|
|
|
|
struct Get_monom_representation {
|
|
typedef std::pair< Exponent_vector, Innermost_coefficient >
|
|
Exponents_coeff_pair;
|
|
typedef std::vector< Exponents_coeff_pair > Monom_rep;
|
|
|
|
template <class OutputIterator>
|
|
void operator()( const Polynomial_d& p, OutputIterator oit ) const {
|
|
typedef Boolean_tag< d == 1 > Is_univariat;
|
|
create_monom_representation( p, oit , Is_univariat());
|
|
}
|
|
|
|
private:
|
|
|
|
template <class OutputIterator>
|
|
void
|
|
create_monom_representation
|
|
( const Polynomial_d& p, OutputIterator oit, Tag_true ) const{
|
|
for( int exponent = 0; exponent <= p.degree(); ++exponent ) {
|
|
// std::cout << "p[exponent]: "<<p[exponent];
|
|
if ( p[exponent] != Coefficient(0) ){
|
|
Exponent_vector exp_vec;
|
|
exp_vec.push_back( exponent );
|
|
*oit = Exponents_coeff_pair( exp_vec, p[exponent] );
|
|
}
|
|
}
|
|
}
|
|
template <class OutputIterator>
|
|
void
|
|
create_monom_representation
|
|
( const Polynomial_d& p, OutputIterator oit, Tag_false ) const {
|
|
for( int exponent = 0; exponent <= p.degree(); ++exponent ) {
|
|
Monom_rep monom_rep;
|
|
typedef Polynomial_traits_d< Coefficient > PT;
|
|
typename PT::Get_monom_representation gmr;
|
|
gmr( p[exponent], std::back_inserter( monom_rep ) );
|
|
for( typename Monom_rep::iterator it = monom_rep.begin();
|
|
it != monom_rep.end(); ++it ) {
|
|
it->first.push_back( exponent );
|
|
}
|
|
copy( monom_rep.begin(), monom_rep.end(), oit );
|
|
}
|
|
}
|
|
};
|
|
|
|
// returns the Exponten_vector of the innermost leading coefficient
|
|
struct Degree_vector{
|
|
typedef Exponent_vector result_type;
|
|
typedef Polynomial_d argument_type;
|
|
|
|
// returns the exponent vector of inner_most_lcoeff.
|
|
result_type operator()(const Polynomial_d& polynomial){
|
|
|
|
typename PTC::Degree_vector degree_vector;
|
|
|
|
Exponent_vector result = degree_vector(polynomial.lcoeff());
|
|
result.insert(result.begin(),polynomial.degree());
|
|
return result;
|
|
}
|
|
};
|
|
};
|
|
|
|
} // namespace CGALi
|
|
|
|
// Definition of Polynomial_traits_d
|
|
//
|
|
// In order to determine the algebraic category of the innermost coefficient,
|
|
// the Polynomial_traits_d_base class with "Null_tag" is used.
|
|
|
|
template< class Polynomial >
|
|
class Polynomial_traits_d
|
|
: public CGALi::Polynomial_traits_d_base< Polynomial,
|
|
typename Algebraic_structure_traits<
|
|
typename CGALi::Innermost_coefficient<Polynomial>::Type >::Algebraic_category,
|
|
typename Algebraic_structure_traits< Polynomial >::Algebraic_category > {
|
|
|
|
//------------ Rebind -----------
|
|
private:
|
|
template <class T, int d>
|
|
struct Gen_polynomial_type{
|
|
typedef CGAL::Polynomial<typename Gen_polynomial_type<T,d-1>::Type> Type;
|
|
};
|
|
template <class T>
|
|
struct Gen_polynomial_type<T,0>{ typedef T Type; };
|
|
|
|
public:
|
|
template <class T, int d>
|
|
struct Rebind{
|
|
typedef Polynomial_traits_d<typename Gen_polynomial_type<T,d>::Type> Other;
|
|
};
|
|
//------------ Rebind -----------
|
|
};
|
|
|
|
|
|
// functor adapting functions for some functors (undocumented)
|
|
namespace CGALi {
|
|
|
|
template< class Polynomial >
|
|
Polynomial make_square_free( const Polynomial& p ) {
|
|
return typename CGAL::Polynomial_traits_d< Polynomial>::
|
|
Make_square_free()( p );
|
|
}
|
|
|
|
template< class Polynomial >
|
|
bool is_square_free( const Polynomial& p ) {
|
|
return typename CGAL::Polynomial_traits_d< Polynomial>::
|
|
Is_square_free()( p );
|
|
}
|
|
|
|
} // namespace CGALi
|
|
|
|
|
|
CGAL_END_NAMESPACE
|
|
|
|
#endif // CGAL_POLYNOMIAL_TRAITS_D_H
|