cgal/Packages/Cartesian_kernel/include/CGAL/Cartesian/Vector_2.h

324 lines
7.8 KiB
C++

// ======================================================================
//
// Copyright (c) 2000 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------
//
// release :
// release_date :
//
// file : include/CGAL/Cartesian/Vector_2.h
// revision : $Revision$
// revision_date : $Date$
// author(s) : Andreas Fabri, Herve Bronnimann
// coordinator : INRIA Sophia-Antipolis (Mariette.Yvinec@sophia.inria.fr)
//
// ======================================================================
#ifndef CGAL_CARTESIAN_VECTOR_2_H
#define CGAL_CARTESIAN_VECTOR_2_H
#include <CGAL/Cartesian/redefine_names_2.h>
CGAL_BEGIN_NAMESPACE
template < class R_ >
class VectorC2 CGAL_ADVANCED_KERNEL_PARTIAL_SPEC
: public R_::Vector_handle_2
{
public:
typedef R_ R;
typedef typename R::FT FT;
typedef typename R::RT RT;
typedef typename R::Vector_handle_2 Vector_handle_2_;
typedef typename Vector_handle_2_::element_type Vector_ref_2;
#ifndef CGAL_CFG_NO_ADVANCED_KERNEL
typedef VectorC2<R,Cartesian_tag> Self;
typedef typename R::Point_2 Point_2;
typedef typename R::Direction_2 Direction_2;
typedef typename R::Line_2 Line_2;
typedef typename R::Ray_2 Ray_2;
typedef typename R::Triangle_2 Triangle_2;
typedef typename R::Segment_2 Segment_2;
typedef typename R::Iso_rectangle_2 Iso_rectangle_2;
typedef typename R::Aff_transformation_2 Aff_transformation_2;
typedef typename R::Circle_2 Circle_2;
#else
typedef VectorC2<R> Self;
typedef typename R::Point_2_base Point_2;
typedef typename R::Direction_2_base Direction_2;
typedef typename R::Line_2_base Line_2;
typedef typename R::Ray_2_base Ray_2;
typedef typename R::Triangle_2_base Triangle_2;
typedef typename R::Segment_2_base Segment_2;
typedef typename R::Iso_rectangle_2_base Iso_rectangle_2;
typedef typename R::Aff_transformation_2_base Aff_transformation_2;
typedef typename R::Circle_2_base Circle_2;
#endif
VectorC2()
: Vector_handle_2_(Vector_ref_2()) {}
VectorC2(const Null_vector &)
: Vector_handle_2_(Vector_ref_2(FT(0), FT(0))) {}
VectorC2(const Point_2 &p)
: Vector_handle_2_(p) {}
VectorC2(const Point_2 &a, const Point_2 &b)
: Vector_handle_2_(b-a) {}
VectorC2(const Direction_2 &d)
: Vector_handle_2_(d) {}
VectorC2(const FT &x, const FT &y)
: Vector_handle_2_(Vector_ref_2(x, y)) {}
VectorC2(const FT &hx, const FT &hy, const FT &hw)
{
if (hw != FT(1))
initialize_with(Vector_ref_2(hx/hw, hy/hw));
else
initialize_with(Vector_ref_2(hx, hy));
}
bool operator==(const Self &v) const;
bool operator!=(const Self &v) const;
bool operator==(const Null_vector &) const;
bool operator!=(const Null_vector &p) const;
const FT & x() const
{
return Ptr()->e0;
}
const FT & y() const
{
return Ptr()->e1;
}
const FT & hx() const
{
return x();
}
const FT & hy() const
{
return y();
}
FT hw() const
{
return FT(1);
}
const FT & cartesian(int i) const;
const FT & operator[](int i) const;
FT homogeneous(int i) const;
int dimension() const
{
return 2;
}
Self operator+(const Self &w) const;
Self operator-(const Self &w) const;
Self operator-() const;
FT operator*(const Self &w) const;
FT squared_length() const;
Self operator/(const FT &c) const;
Direction_2 direction() const;
Self perpendicular(const Orientation &o) const;
Self transform(const Aff_transformation_2 &t) const
{
return t.transform(*this);
}
};
#ifdef CGAL_CFG_TYPENAME_BUG
#define typename
#endif
template < class R >
CGAL_KERNEL_INLINE
bool
VectorC2<R CGAL_CTAG>::operator==(const VectorC2<R CGAL_CTAG> &v) const
{
if (identical(v))
return true;
return x() == v.x() && y() == v.y();
}
template < class R >
inline
bool
VectorC2<R CGAL_CTAG>::operator!=(const VectorC2<R CGAL_CTAG> &v) const
{
return !(*this == v);
}
template < class R >
inline
bool
VectorC2<R CGAL_CTAG>::operator==(const Null_vector &) const
{
return CGAL_NTS is_zero(x()) && CGAL_NTS is_zero(y());
}
template < class R >
inline
bool
VectorC2<R CGAL_CTAG>::operator!=(const Null_vector &v) const
{
return !(*this == v);
}
template < class R >
CGAL_KERNEL_INLINE
const typename VectorC2<R CGAL_CTAG>::FT &
VectorC2<R CGAL_CTAG>::cartesian(int i) const
{
CGAL_kernel_precondition( (i == 0) || (i == 1) );
return (i == 0) ? x() : y();
}
template < class R >
inline
const typename VectorC2<R CGAL_CTAG>::FT &
VectorC2<R CGAL_CTAG>::operator[](int i) const
{
return cartesian(i);
}
template < class R >
CGAL_KERNEL_INLINE
typename VectorC2<R CGAL_CTAG>::FT
VectorC2<R CGAL_CTAG>::homogeneous(int i) const
{
return (i == 2) ? FT(1) : cartesian(i);
}
template < class R >
CGAL_KERNEL_INLINE
VectorC2<R CGAL_CTAG>
VectorC2<R CGAL_CTAG>::operator+(const VectorC2<R CGAL_CTAG> &w) const
{
return VectorC2<R CGAL_CTAG>(x() + w.x(), y() + w.y());
}
template < class R >
CGAL_KERNEL_INLINE
VectorC2<R CGAL_CTAG>
VectorC2<R CGAL_CTAG>::operator-(const VectorC2<R CGAL_CTAG> &w) const
{
return VectorC2<R CGAL_CTAG>(x() - w.x(), y() - w.y());
}
template < class R >
CGAL_KERNEL_INLINE
VectorC2<R CGAL_CTAG>
VectorC2<R CGAL_CTAG>::operator-() const
{
return VectorC2<R CGAL_CTAG>(-x(), -y());
}
template < class R >
CGAL_KERNEL_INLINE
typename VectorC2<R CGAL_CTAG>::FT
VectorC2<R CGAL_CTAG>::operator*(const VectorC2<R CGAL_CTAG> &w) const
{
return x() * w.x() + y() * w.y();
}
template < class R >
CGAL_KERNEL_INLINE
typename VectorC2<R CGAL_CTAG>::FT
VectorC2<R CGAL_CTAG>::squared_length() const
{
return CGAL_NTS square(x()) + CGAL_NTS square(y());
}
template < class R >
CGAL_KERNEL_INLINE
VectorC2<R CGAL_CTAG>
VectorC2<R CGAL_CTAG>::
operator/(const typename VectorC2<R CGAL_CTAG>::FT &c) const
{
return VectorC2<R CGAL_CTAG>( x()/c, y()/c);
}
template < class R >
inline
typename VectorC2<R CGAL_CTAG>::Direction_2
VectorC2<R CGAL_CTAG>::direction() const
{
return Direction_2(*this);
}
template < class R >
CGAL_KERNEL_MEDIUM_INLINE
VectorC2<R CGAL_CTAG>
VectorC2<R CGAL_CTAG>::perpendicular(const Orientation &o) const
{
CGAL_kernel_precondition( o != COLLINEAR );
if (o == COUNTERCLOCKWISE)
return VectorC2<R CGAL_CTAG>(-y(), x());
else
return VectorC2<R CGAL_CTAG>(y(), -x());
}
#ifndef CGAL_NO_OSTREAM_INSERT_VECTORC2
template < class R >
std::ostream &
operator<<(std::ostream &os, const VectorC2<R CGAL_CTAG> &v)
{
switch(os.iword(IO::mode)) {
case IO::ASCII :
return os << v.x() << ' ' << v.y();
case IO::BINARY :
write(os, v.x());
write(os, v.y());
return os;
default:
return os << "VectorC2(" << v.x() << ", " << v.y() << ')';
}
}
#endif // CGAL_NO_OSTREAM_INSERT_VECTORC2
#ifndef CGAL_NO_ISTREAM_EXTRACT_VECTORC2
template < class R >
std::istream &
operator>>(std::istream &is, VectorC2<R CGAL_CTAG> &p)
{
typename VectorC2<R CGAL_CTAG>::FT x, y;
switch(is.iword(IO::mode)) {
case IO::ASCII :
is >> x >> y;
break;
case IO::BINARY :
read(is, x);
read(is, y);
break;
default:
std::cerr << "" << std::endl;
std::cerr << "Stream must be in ascii or binary mode" << std::endl;
break;
}
if (is)
p = VectorC2<R CGAL_CTAG>(x, y);
return is;
}
#endif // CGAL_NO_ISTREAM_EXTRACT_VECTORC2
#ifdef CGAL_CFG_TYPENAME_BUG
#undef typename
#endif
CGAL_END_NAMESPACE
#endif // CGAL_CARTESIAN_VECTOR_2_H