cgal/Packages/H2/include/CGAL/CircleH2.h

428 lines
11 KiB
C++

// ======================================================================
//
// Copyright (c) 1999 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------
//
// release :
// release_date :
//
// file : CircleH2.h
// package : H2
// revision : $Revision$
// revision_date : $Date$
// author(s) : Sven Schoenherr
// Stefan Schirra
//
// coordinator : MPI, Saarbruecken (<Stefan.Schirra@mpi-sb.mpg.de>)
// ======================================================================
#ifndef CGAL_CIRCLEH2_H
#define CGAL_CIRCLEH2_H
#include <CGAL/enum.h>
#include <CGAL/PointH2.h>
#include <CGAL/predicates_on_pointsH2.h>
#include <CGAL/distance_predicatesH2.h>
#include <CGAL/basic_constructionsH2.h>
CGAL_BEGIN_NAMESPACE
template <class R>
class Circle_repH2 : public Ref_counted
{
public:
typedef typename R::FT FT;
friend class CircleH2<R>;
Circle_repH2() {}
Circle_repH2(const PointH2<R> p, const FT sq_rad, const Orientation& o)
: center(p), squared_radius(sq_rad), orientation_(o) {}
protected:
PointH2<R> center;
FT squared_radius;
Orientation orientation_;
};
template <class R>
class Simple_Circle_repH2
{
public:
typedef typename R::FT FT;
friend class CircleH2<R>;
Simple_Circle_repH2() {}
Simple_Circle_repH2(const PointH2<R> p, const FT sq_rad, const Orientation&o)
: center(p), squared_radius(sq_rad), orientation_(o) {}
protected:
PointH2<R> center;
FT squared_radius;
Orientation orientation_;
};
template <class R_>
class CircleH2
: public R_::Circle_handle_2
{
public:
typedef R_ R;
typedef typename R::FT FT;
typedef typename R::RT RT;
typedef typename R::Circle_handle_2 Circle_handle_2_;
typedef typename Circle_handle_2_::element_type Circle_ref_2;
CircleH2()
: Circle_handle_2_() {}
CircleH2(const PointH2<R>& p, const PointH2<R>& q, const PointH2<R>& r)
{
Orientation o = CGAL::orientation( p, q, r);
CGAL_kernel_precondition( o != COLLINEAR);
PointH2<R> cp = circumcenter( p, q, r);
FT sq_r = squared_distance( p, cp);
initialize_with( Circle_ref_2( cp, sq_r, o));
}
CircleH2(const PointH2<R>& p, const PointH2<R>& q, const Orientation& o)
{
CGAL_kernel_precondition( o != COLLINEAR);
if ( p != q)
{
PointH2<R> cp = midpoint( p, q);
FT sq_r = squared_distance( cp, p);
initialize_with( Circle_ref_2( cp, sq_r, o));
}
else
initialize_with( Circle_ref_2( p, FT( 0), o));
}
CircleH2(const PointH2<R>& cp, const FT& squared_radius,
const Orientation& o)
{
CGAL_precondition( ( ! CGAL_NTS is_negative( squared_radius)) &&
( o != COLLINEAR ) );
initialize_with( Circle_ref_2( cp, squared_radius, o ));
}
Bbox_2
bbox() const;
CircleH2<R>
orthogonal_transform(const Aff_transformationH2<R>&) const;
const PointH2<R> &
center() const;
Orientation
orientation() const;
const FT &
squared_radius() const;
CircleH2<R>
opposite() const;
Oriented_side
oriented_side(const PointH2<R>& ) const;
Bounded_side
bounded_side(const PointH2<R>& ) const;
bool operator==( const CircleH2<R>& ) const;
bool operator!=( const CircleH2<R>& ) const;
bool has_on_positive_side(const PointH2<R>& ) const;
bool has_on_negative_side(const PointH2<R>& ) const;
bool has_on_boundary( const PointH2<R>& ) const;
bool has_on_bounded_side( const PointH2<R>& ) const;
bool has_on_unbounded_side(const PointH2<R>&) const;
bool is_degenerate() const;
// bool oriented_equal( const CircleH2<R>& ) const;
// bool unoriented_equal( const CircleH2<R>& ) const;
};
#ifdef CGAL_CFG_TYPENAME_BUG
#define typename
#endif
template <class R>
inline
const PointH2<R> &
CircleH2<R>::center() const
{ return Ptr()->center; }
template <class R>
inline
const typename CircleH2<R>::FT &
CircleH2<R>::squared_radius() const
{ return Ptr()->squared_radius; }
template <class R>
CGAL_KERNEL_INLINE
CircleH2<R>
CircleH2<R>::opposite() const
{
return CircleH2<R>( center(),
squared_radius(),
CGAL::opposite( orientation() ) );
}
template <class R>
inline
Orientation
CircleH2<R>::orientation() const
{ return Ptr()->orientation_; }
template <class R>
CGAL_KERNEL_INLINE
Oriented_side
CircleH2<R>::oriented_side( const PointH2<R>& p) const
{
FT sq_dist = squared_distance( p, center() );
FT sq_rad = squared_radius();
Comparison_result vgl = CGAL_NTS compare( sq_dist, sq_rad );
Oriented_side rel_pos = (vgl == LARGER ) ?
ON_NEGATIVE_SIDE :
( (vgl == SMALLER ) ?
ON_POSITIVE_SIDE :
ON_ORIENTED_BOUNDARY);
if (Ptr()->orientation_ == POSITIVE)
{ return rel_pos; }
else // NEGATIVE
{ return CGAL::opposite( rel_pos ); }
}
template <class R>
CGAL_KERNEL_INLINE
bool
CircleH2<R>::has_on_positive_side( const PointH2<R>& p) const
{
if ( orientation() == POSITIVE )
{ return (has_on_bounded_side(p) ); }
else
{ return (has_on_unbounded_side(p) ); }
}
template <class R>
CGAL_KERNEL_INLINE
bool
CircleH2<R>::has_on_boundary(const PointH2<R>& p) const
{
FT sq_dist = squared_distance( p, center() );
FT sq_rad = squared_radius();
return ( sq_dist == sq_rad );
}
template <class R>
CGAL_KERNEL_INLINE
bool
CircleH2<R>::has_on_negative_side( const PointH2<R>& p) const
{
if ( orientation() == NEGATIVE )
{
return (has_on_bounded_side(p) );
}
else
{
return (has_on_unbounded_side(p) );
}
}
template <class R>
CGAL_KERNEL_INLINE
Bounded_side
CircleH2<R>::bounded_side(const PointH2<R>& p) const
{
FT sq_dist = squared_distance( p, center() );
FT sq_rad = squared_radius();
Comparison_result vgl = CGAL_NTS compare( sq_dist, sq_rad );
return (vgl == LARGER ) ? ON_UNBOUNDED_SIDE :
( (vgl == SMALLER ) ?
ON_BOUNDED_SIDE :
ON_BOUNDARY);
}
template <class R>
CGAL_KERNEL_INLINE
bool
CircleH2<R>::has_on_bounded_side(const PointH2<R>& p) const
{
FT sq_dist = squared_distance( p, center() );
FT sq_rad = squared_radius();
return ( sq_dist < sq_rad );
}
template <class R>
CGAL_KERNEL_INLINE
bool
CircleH2<R>::has_on_unbounded_side(const PointH2<R>& p) const
{
FT sq_dist = squared_distance( p, center() );
FT sq_rad = squared_radius();
return ( sq_rad < sq_dist );
}
template <class R>
inline
bool
CircleH2<R>::is_degenerate() const
{ return ( squared_radius() == FT(0) ); }
template <class R>
CGAL_KERNEL_MEDIUM_INLINE
Bbox_2
CircleH2<R>::bbox() const
{
#ifndef CGAL_CFG_NO_NAMESPACE
using std::swap;
#endif // CGAL_CFG_NO_NAMESPACE
double eps = double(1.0) /(double(1<<26) * double(1<<26));
double hxd = CGAL::to_double( center().hx() );
double hyd = CGAL::to_double( center().hy() );
double hwd = CGAL::to_double( center().hw() );
double xmin = ( hxd - eps*hxd ) / ( hwd + eps*hwd );
double xmax = ( hxd + eps*hxd ) / ( hwd - eps*hwd );
double ymin = ( hyd - eps*hyd ) / ( hwd + eps*hwd );
double ymax = ( hyd + eps*hyd ) / ( hwd - eps*hwd );
if ( center().hx() < RT(0) )
{
swap(xmin, xmax);
}
if ( center().hy() < RT(0) )
{
swap(ymin, ymax);
}
double sqradd = CGAL::to_double( squared_radius() );
sqradd += sqradd*eps;
sqradd = sqrt(sqradd);
sqradd += sqradd*eps;
xmin -= sqradd;
xmax += sqradd;
xmin -= xmin*eps;
xmax += xmax*eps;
ymin -= sqradd;
ymax += sqradd;
ymin -= ymin*eps;
ymax += ymax*eps;
return Bbox_2(xmin, ymin, xmax, ymax);
}
template <class R>
CGAL_KERNEL_INLINE
CircleH2<R>
CircleH2<R>::
orthogonal_transform(const Aff_transformationH2<R>& t) const
{
VectorH2<R> vec( RT(1), RT(0) ); // unit vector
vec = vec.transform(t); // transformed
FT sq_scale = FT( vec*vec ); // squared scaling factor
if ( t.is_even() )
{
return CircleH2<R>(t.transform(center() ),
sq_scale * squared_radius(),
orientation() );
}
else
{
return CircleH2<R>(t.transform(center() ),
sq_scale * squared_radius(),
CGAL::opposite( orientation()) );
}
}
template <class R>
CGAL_KERNEL_INLINE
bool
CircleH2<R>::operator==(const CircleH2<R>& c) const
{
return ( center() == c.center() )
&&( squared_radius() == c.squared_radius() )
&&( orientation() == c.orientation() );
}
template <class R>
inline
bool
CircleH2<R>::operator!=(const CircleH2<R>& c) const
{ return !(*this == c); }
#ifndef CGAL_NO_OSTREAM_INSERT_CIRCLEH2
template < class R >
std::ostream &operator<<(std::ostream &os, const CircleH2<R> &c)
{
switch(os.iword(IO::mode))
{
case IO::ASCII :
os << c.center() << ' ' << c.squared_radius() << ' '
<< static_cast<int>(c.orientation());
break;
case IO::BINARY :
os << c.center();
write(os, c.squared_radius());
write(os, static_cast<int>(c.orientation()));
break;
default:
os << "CircleH2(" << c.center() << ", " << c.squared_radius() ;
if (c.orientation() == CLOCKWISE) {
os << ", clockwise)";
} else if (c.orientation() == COUNTERCLOCKWISE) {
os << ", counterclockwise)";
} else {
os << ", collinear)";
}
break;
}
return os;
}
#endif // CGAL_NO_OSTREAM_INSERT_CIRCLEH2
#ifndef CGAL_NO_ISTREAM_EXTRACT_CIRCLEH2
template < class R >
std::istream& operator>>(std::istream &is, CircleH2<R> &c)
{
PointH2<R> center;
typename R::FT squared_radius;
int o;
switch(is.iword(IO::mode))
{
case IO::ASCII :
is >> center >> squared_radius >> o;
break;
case IO::BINARY :
is >> center;
read(is, squared_radius);
is >> o;
break;
default:
std::cerr << "" << std::endl;
std::cerr << "Stream must be in ascii or binary mode" << std::endl;
break;
}
c = CircleH2<R>(center, squared_radius, static_cast<Orientation>(o));
return is;
}
#endif // CGAL_NO_ISTREAM_EXTRACT_CIRCLEH2
#ifdef CGAL_CFG_TYPENAME_BUG
#undef typename
#endif
CGAL_END_NAMESPACE
#endif // CGAL_CIRCLEH2_H