cgal/Packages/H2/include/CGAL/Homogeneous_converter.h

199 lines
5.8 KiB
C++

// ============================================================================
//
// Copyright (c) 2001 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------------
//
// release :
// release_date :
//
// file : include/CGAL/Homogeneous_converter.h
// revision : $Revision$
// revision_date : $Date$
// package : H2
// author(s) : Sylvain Pion
// coordinator : INRIA Sophia-Antipolis (<Mariette.Yvinec@sophia.inria.fr>)
//
// ============================================================================
#ifndef CGAL_HOMOGENEOUS_CONVERTER_H
#define CGAL_HOMOGENEOUS_CONVERTER_H
// This file contains the definition of a kernel converter, based on
// Homogeneous representation. It should work between *Homogeneous<A,B>
// and *Homogeneous<C,D>, provided you give an RT converter from A to C,
// and an FT converter from B to D.
#include <CGAL/basic.h>
#include <CGAL/NT_converter.h>
CGAL_BEGIN_NAMESPACE
template < class K1, class K2,
class RT_Converter = NT_converter<CGAL_TYPENAME_MSVC_NULL K1::RT,
CGAL_TYPENAME_MSVC_NULL K2::RT>,
class FT_Converter = NT_converter<CGAL_TYPENAME_MSVC_NULL K1::FT,
CGAL_TYPENAME_MSVC_NULL K2::FT> >
class Homogeneous_converter
{
public:
typename K2::Point_2
operator()(const typename K1::Point_2 &a) const
{
return k.construct_point_2_object()(rc(a.hx()), rc(a.hy()),
rc(a.hw()));
}
typename K2::Vector_2
operator()(const typename K1::Vector_2 &a) const
{
return k.construct_vector_2_object()(rc(a.hx()), rc(a.hy()),
rc(a.hw()));
}
typename K2::Direction_2
operator()(const typename K1::Direction_2 &a) const
{
return k.construct_direction_2_object()(rc(a.dx()), rc(a.dy()));
}
typename K2::Segment_2
operator()(const typename K1::Segment_2 &a) const
{
return k.construct_segment_2_object()(operator()(a.source()),
operator()(a.target()));
}
typename K2::Line_2
operator()(const typename K1::Line_2 &a) const
{
return k.construct_line_2_object()(rc(a.a()), rc(a.b()), rc(a.c()));
}
typename K2::Ray_2
operator()(const typename K1::Ray_2 &a) const
{
return k.construct_ray_2_object()(operator()(a.source()),
operator()(a.second_point()));
}
typename K2::Circle_2
operator()(const typename K1::Circle_2 &a) const
{
return k.construct_circle_2_object()(operator()(a.center()),
fc(a.squared_radius()),
a.orientation());
}
typename K2::Triangle_2
operator()(const typename K1::Triangle_2 &a) const
{
return k.construct_triangle_2_object()(operator()(a.vertex(0)),
operator()(a.vertex(1)),
operator()(a.vertex(2)));
}
typename K2::Iso_rectangle_2
operator()(const typename K1::Iso_rectangle_2 &a) const
{
return k.construct_iso_rectangle_2_object()(operator()(a.min()),
operator()(a.max()));
}
typename K2::Point_3
operator()(const typename K1::Point_3 &a) const
{
return k.construct_point_3_object()(rc(a.hx()), rc(a.hy()),
rc(a.hz()), rc(a.hw()));
}
typename K2::Vector_3
operator()(const typename K1::Vector_3 &a) const
{
return k.construct_vector_3_object()(rc(a.hx()), rc(a.hy()),
rc(a.hz()), rc(a.hw()));
}
typename K2::Direction_3
operator()(const typename K1::Direction_3 &a) const
{
return k.construct_direction_3_object()(rc(a.dx()), rc(a.dy()),
rc(a.dz()));
}
typename K2::Segment_3
operator()(const typename K1::Segment_3 &a) const
{
return k.construct_segment_3_object()(operator()(a.source()),
operator()(a.target()));
}
typename K2::Line_3
operator()(const typename K1::Line_3 &a) const
{
return k.construct_line_3_object()(operator()(a.point()),
operator()(a.direction()));
}
typename K2::Ray_3
operator()(const typename K1::Ray_3 &a) const
{
return k.construct_ray_3_object()(operator()(a.source()),
operator()(a.second_point()));
}
typename K2::Sphere_3
operator()(const typename K1::Sphere_3 &a) const
{
return k.construct_sphere_3_object()(operator()(a.center()),
fc(a.squared_radius()),
a.orientation());
}
typename K2::Triangle_3
operator()(const typename K1::Triangle_3 &a) const
{
return k.construct_triangle_3_object()(operator()(a.vertex(0)),
operator()(a.vertex(1)),
operator()(a.vertex(2)));
}
typename K2::Tetrahedron_3
operator()(const typename K1::Tetrahedron_3 &a) const
{
return k.construct_tetrahedron_3_object()(operator()(a.vertex(0)),
operator()(a.vertex(1)),
operator()(a.vertex(2)),
operator()(a.vertex(3)));
}
typename K2::Plane_3
operator()(const typename K1::Plane_3 &a) const
{
return k.construct_plane_3_object()(rc(a.a()), rc(a.b()), rc(a.c()),
rc(a.d()));
}
typename K2::Iso_cuboid_3
operator()(const typename K1::Iso_cuboid_3 &a) const
{
return k.construct_iso_cuboid_3_object()(operator()(a.min()),
operator()(a.max()));
}
private:
RT_Converter rc;
FT_Converter fc;
K2 k;
};
CGAL_END_NAMESPACE
#endif // CGAL_HOMOGENEOUS_CONVERTER_H