cgal/Packages/H3/include/CGAL/TriangleH3.h

233 lines
5.5 KiB
C++

// ======================================================================
//
// Copyright (c) 1999 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------
//
// release :
// release_date :
//
// file : TriangleH3.h
// package : H3
// revision : $Revision$
// revision_date : $Date$
// author(s) : Stefan Schirra
//
//
// coordinator : MPI, Saarbruecken (<Stefan.Schirra@mpi-sb.mpg.de>)
// ======================================================================
#ifndef CGAL_TRIANGLEH3_H
#define CGAL_TRIANGLEH3_H
#include <CGAL/predicates_on_pointsH3.h>
#include <CGAL/PlaneH3.h>
#include <CGAL/TetrahedronH3.h>
CGAL_BEGIN_NAMESPACE
template < class R_ >
class TriangleH3
: public R_::Triangle_handle_3
{
public:
typedef R_ R;
typedef typename R::RT RT;
typedef typename R::FT FT;
typedef typename R::Triangle_handle_3 Triangle_handle_3_;
typedef typename Triangle_handle_3_::element_type Triangle_ref_3;
TriangleH3()
: Triangle_handle_3_(Triangle_ref_3()) {}
TriangleH3(const PointH3<R> &p,
const PointH3<R> &q,
const PointH3<R> &r)
: Triangle_handle_3_(Triangle_ref_3(p,q,r)) {}
bool operator==(const TriangleH3<R> &t) const;
bool operator!=(const TriangleH3<R> &t) const;
PlaneH3<R> supporting_plane() const;
TriangleH3<R> transform(const Aff_transformationH3<R> &t) const;
bool has_on(const PointH3<R> &p) const;
bool nondegenerate_has_on(const PointH3<R> &p) const;
bool is_degenerate() const;
const PointH3<R> & vertex(int i) const;
const PointH3<R> & operator[](int i) const;
FT squared_area() const;
Bbox_3 bbox() const;
};
template < class R >
CGAL_KERNEL_LARGE_INLINE
bool
TriangleH3<R>::operator==(const TriangleH3<R> &t) const
{
int i;
for(i = 0; (i< 3) && (vertex(0) != t.vertex(i) ); i++) {}
if (i==3)
{
return false;
}
return ( vertex(1) == t.vertex(i+1) && vertex(2) == t.vertex(i+2) );
}
template < class R >
inline
bool
TriangleH3<R>::operator!=(const TriangleH3<R> &t) const
{ return !(*this == t); }
template < class R >
CGAL_KERNEL_INLINE
const PointH3<R> &
TriangleH3<R>::vertex(int i) const
{
if (i<0) i=(i%3)+3;
else if (i>2) i=i%3;
return (i==0) ? Ptr()->e0 :
(i==1) ? Ptr()->e1 :
Ptr()->e2;
}
template < class R >
inline
const PointH3<R> &
TriangleH3<R>::operator[](int i) const
{ return vertex(i); }
template < class R >
CGAL_KERNEL_MEDIUM_INLINE
typename TriangleH3<R>::FT
TriangleH3<R>::squared_area() const
{
VectorH3<R> v1 = vertex(1) - vertex(0);
VectorH3<R> v2 = vertex(2) - vertex(0);
VectorH3<R> v3 = cross_product(v1, v2);
return (v3 * v3)/FT(4);
}
template < class R >
CGAL_KERNEL_INLINE
PlaneH3<R>
TriangleH3<R>::supporting_plane() const
{ return PlaneH3<R>(vertex(0), vertex(1), vertex(2)); }
template < class R >
inline
Bbox_3
TriangleH3<R>::bbox() const
{ return vertex(0).bbox() + vertex(1).bbox() + vertex(2).bbox(); }
template < class R >
CGAL_KERNEL_INLINE
TriangleH3<R>
TriangleH3<R>::
transform(const Aff_transformationH3<R> &t) const
{
return TriangleH3<R>(t.transform(vertex(0)),
t.transform(vertex(1)),
t.transform(vertex(2)));
}
#ifndef CGAL_NO_OSTREAM_INSERT_TRIANGLEH3
template < class R >
std::ostream &operator<<(std::ostream &os, const TriangleH3<R> &t)
{
switch(os.iword(IO::mode))
{
case IO::ASCII :
return os << t[0] << ' ' << t[1] << ' ' << t[2];
case IO::BINARY :
return os << t[0] << t[1] << t[2];
default:
os << "TriangleH3(" << t[0] << ", " << t[1] << ", " << t[2] <<")";
return os;
}
}
#endif // CGAL_NO_OSTREAM_INSERT_TRIANGLEH3
#ifndef CGAL_NO_ISTREAM_EXTRACT_TRIANGLEH3
template < class R >
std::istream &operator>>(std::istream &is, TriangleH3<R> &t)
{
PointH3<R> p, q, r;
is >> p >> q >> r;
t = TriangleH3<R>(p, q, r);
return is;
}
#endif // CGAL_NO_ISTREAM_EXTRACT_TRIANGLEH3
template < class R >
CGAL_KERNEL_INLINE
bool
TriangleH3<R>::
nondegenerate_has_on(const PointH3<R> &p) const
{
CGAL_kernel_precondition( !is_degenerate() );
PlaneH3<R> sup_pl = supporting_plane();
if ( !sup_pl.has_on(p) )
{
return false;
}
TetrahedronH3<R> tetrapak( vertex(0),
vertex(1),
vertex(2),
vertex(0) + sup_pl.orthogonal_vector());
return tetrapak.has_on_boundary(p);
}
template < class R >
CGAL_KERNEL_LARGE_INLINE
bool
TriangleH3<R>::has_on(const PointH3<R> &p) const
{
if (!is_degenerate() )
{
return nondegenerate_has_on(p);
}
PointH3<R> minp( vertex(0) );
PointH3<R> maxp( vertex(1) );
if (lexicographically_xyz_smaller(vertex(1),vertex(0)) )
{
minp = vertex(1);
maxp = vertex(0);
}
if (lexicographically_xyz_smaller(vertex(2),minp ) )
{
minp = vertex(2);
}
if (lexicographically_xyz_smaller(maxp, vertex(2)) )
{
maxp = vertex(2);
}
if (minp == maxp)
{
return (p == maxp);
}
SegmentH3<R> s(minp,maxp);
return s.has_on(p);
}
template < class R >
CGAL_KERNEL_INLINE
bool
TriangleH3<R>::is_degenerate() const
{ return collinear(vertex(0),vertex(1),vertex(2)); }
CGAL_END_NAMESPACE
#endif // CGAL_TRIANGLEH3_H