cgal/AABB_tree/include/CGAL/AABB_tree.h

528 lines
17 KiB
C++

// Copyright (c) 2008 INRIA Sophia-Antipolis (France), ETHZ (Suisse).
// Copyrigth (c) 2009 GeometryFactory (France)
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Camille Wormser, Pierre Alliez, Laurent Rineau, Stephane Tayeb
#ifndef CGAL_AABB_TREE_H
#define CGAL_AABB_TREE_H
#include <vector>
#include <iterator>
#include <CGAL/AABB_node.h>
#include <CGAL/AABB_search_tree.h>
namespace CGAL {
/**
* @class AABB_tree
*
*
*/
template <typename AABBTraits>
class AABB_tree
{
public:
/// types
typedef typename AABBTraits::FT FT;
typedef typename AABBTraits::Point Point;
typedef typename AABBTraits::Primitive Primitive;
typedef typename AABBTraits::Bounding_box Bounding_box;
typedef typename std::pair<typename Point,typename Primitive> Point_and_primitive;
private:
// internal KD-tree used to accelerate the distance queries
typedef AABB_search_tree<AABBTraits> Search_tree;
public:
/**
* @brief Constructor
* @param first iterator over first primitive to insert
* @param beyond past-the-end iterator
*
* Builds the datastructure. Type ConstPrimitiveIterator can be any const
* iterator on a container of Primitive::id_type such that Primitive has
* a constructor taking a ConstPrimitiveIterator as argument.
*/
template<typename ConstPrimitiveIterator>
AABB_tree(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond);
/// Clears the current tree and rebuilds the datastructure.
/// Type ConstPrimitiveIterator can be any const iterator on
/// a container of Primitive::id_type such that Primitive has
/// a constructor taking a ConstPrimitiveIterator as argument.
/// Returns true if the memory allocation was successful.
template<typename ConstPrimitiveIterator>
bool clear_and_insert(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond);
/// Non virtual destructor
~AABB_tree() { clear(); }
/// Clears the tree
void clear(void)
{
m_data.clear();
delete[] m_p_root;
m_p_root = NULL;
m_search_tree_constructed = false;
}
/// Construct internal search tree with a given point set
template<typename ConstPointIterator>
void construct_search_tree(ConstPointIterator first, ConstPointIterator beyond);
/// Construct internal search tree from
/// a point set taken on the internal primitives
void construct_search_tree(void);
template<typename Query>
bool do_intersect(const Query& q) const;
template<typename Query>
int number_of_intersections(const Query& q) const;
template<typename Query, typename OutputIterator>
OutputIterator all_intersected_primitives(const Query& q,
OutputIterator out) const;
template<typename Query, typename OutputIterator>
OutputIterator all_intersections(const Query& q,
OutputIterator out) const;
template<typename Query>
bool any_intersection(const Query& q,
Intersection& intersection) const;
template<typename Query, typename OutputIterator>
bool any_intersected_primitive(const Query& q,
Primitive& pr) const;
// distance queries
FT squared_distance(const Point& q, const Point& hint) const;
FT squared_distance(const Point& q) const;
Point closest_point(const Point& q, const Point& hint) const;
Point closest_point(const Point& q) const;
Primitive closest_primitive(const Point& q, const Point& hint) const;
Primitive closest_primitive(const Point& q) const;
Point_and_primitive closest_point_and_primitive(const Point& q, const Point& hint) const;
Point_and_primitive closest_point_and_primitive(const Point& q) const;
//////////////////////////////////////////////
//TODO: document this
Bounding_box root_bbox() const { return m_p_root->bounding_box(); }
bool is_empty() const { return m_data.empty(); }
size_t size() const { return m_data.size(); }
/// generic traversal of tree
template <class Query, class Traversal_traits>
void traversal(const Query& q, Traversal_traits& traits) const
{
m_p_root->template traversal<Traversal_traits,Query>(q, traits, m_data.size());
}
//////////////////////////////////////////////
private:
typedef AABB_node<AABBTraits> Node;
typedef typename AABBTraits::Sphere Sphere;
//-------------------------------------------------------
// Traits classes for traversal computation
//-------------------------------------------------------
/**
* @class First_intersection_traits
*/
template<typename Query>
class First_intersection_traits
{
public:
First_intersection_traits()
: m_is_found(false)
, m_result() {}
bool go_further() const { return !m_is_found; }
void intersection(const Query& q, const Primitive& primitive)
{
m_is_found = AABBTraits().intersection(q, primitive, m_result);
}
bool do_intersect(const Query& q, const Node& node) const
{
return AABBTraits().do_intersect(q, node.bounding_box());
}
Point_and_primitive result() const { return m_result; }
bool is_intersection_found() const { return m_is_found; }
private:
bool m_is_found;
Point_and_primitive m_result;
};
/**
* @class Counting_traits
*/
template<typename Query>
class Counting_traits
{
public:
Counting_traits()
: m_intersection()
, m_nb_intersections(0) {}
bool go_further() const { return true; }
void intersection(const Query& q, const Primitive& primitive)
{
if( AABBTraits().intersection(q, primitive, m_intersection) )
{
++m_nb_intersections;
}
}
bool do_intersect(const Query& q, const Node& node) const
{
return AABBTraits().do_intersect(q, node.bounding_box());
}
int intersection_number() const { return m_nb_intersections; }
private:
Point_and_primitive m_intersection;
int m_nb_intersections;
};
/**
* @class Listing_intersection_traits
*/
template<typename Query, typename Output_iterator>
class Listing_intersection_traits
{
public:
Listing_intersection_traits(Output_iterator out_it)
: m_intersection()
, m_out_it(out_it) {}
bool go_further() const { return true; }
void intersection(const Query& q, const Primitive& primitive)
{
if( AABBTraits().intersection(q, primitive, m_intersection) )
{
*m_out_it++ = m_intersection;
}
}
bool do_intersect(const Query& q, const Node& node) const
{
return AABBTraits().do_intersect(q, node.bounding_box());
}
private:
Intersection m_intersection;
Output_iterator m_out_it;
};
/**
* @class Listing_primitive_traits
*/
template<typename Query, typename Output_iterator>
class Listing_primitive_traits
{
public:
Listing_primitive_traits(Output_iterator out_it)
: m_out_it(out_it) {}
bool go_further() const { return true; }
void intersection(const Query& q, const Primitive& primitive)
{
if( AABBTraits().do_intersect(q, primitive) )
{
*m_out_it++ = primitive;
}
}
bool do_intersect(const Query& q, const Node& node) const
{
return AABBTraits().do_intersect(q, node.bounding_box());
}
private:
Output_iterator m_out_it;
};
/**
* @class Projection_traits
*/
class Distance_traits
{
public:
Distance_traits(const Point& query,
const Point& hint)
: m_closest_point(hint),
m_sphere(AABBTraits().sphere(query,hint))
{}
bool go_further() const { return true; }
void intersection(const Point& query, const Primitive& primitive)
{
// TOFIX: update m_closest_primitive
m_closest_point = AABBTraits().nearest_point(query, primitive, m_closest_point);
m_sphere = AABBTraits().sphere(q, m_closest_point);
}
bool do_intersect(const Point& q, const Node& node) const
{
return AABBTraits().do_intersect(m_sphere, node.bounding_box());
}
Point closest_point() const { return m_closest_point; }
private:
// TOFIX: add closest_primitive
Sphere m_sphere;
Point m_closest_point;
};
private:
// set of input primitives
std::vector<Primitive> m_data;
// single root node
Node* m_p_root;
// search KD-tree
Search_tree m_search_tree;
bool m_search_tree_constructed;
private:
// Disabled copy constructor & assignment operator
typedef AABB_tree<AABBTraits> Self;
AABB_tree(const Self& src);
Self& operator=(const Self& src);
}; // end class AABB_tree
template<typename Tr>
template<typename ConstPrimitiveIterator>
AABB_tree<Tr>::AABB_tree(ConstPrimitiveIterator first,
ConstPrimitiveIterator beyond)
: m_data()
, m_p_root(NULL)
, m_search_tree_constructed(false)
{
// Insert each primitive into tree
// TODO: get number of elements to reserve space ?
while ( first != beyond )
{
m_data.push_back(Primitive(first));
++first;
}
m_p_root = new Node[m_data.size()-1]();
if(m_p_root == NULL)
{
std::cerr << "Unable to allocate memory for AABB tree" << std::endl;
CGAL_assertion(m_p_root != NULL);
m_data.clear();
}
else
m_p_root->expand(m_data.begin(), m_data.end(), m_data.size());
}
// Clears tree and insert a set of primitives
// Returns true upon successful memory allocation
template<typename Tr>
template<typename ConstPrimitiveIterator>
bool AABB_tree<Tr>::clear_and_insert(ConstPrimitiveIterator first,
ConstPrimitiveIterator beyond)
{
clear();
// inserts primitives
while(first != beyond)
{
m_data.push_back(Primitive(first));
first++;
}
// allocates tree nodes
m_p_root = new Node[m_data.size()-1]();
if(m_p_root == NULL)
{
std::cerr << "Unable to allocate memory for AABB tree" << std::endl;
m_data.clear();
return false;
}
// constructs the tree
m_p_root->expand(m_data.begin(), m_data.end(), m_data.size());
return true;
}
// constructs the search KD tree from given points
template<typename Tr>
template<typename ConstPointIterator>
void
AABB_tree<Tr>::construct_search_tree(ConstPointIterator first,
ConstPointIterator beyond)
{
m_search_tree.init(first, beyond);
m_search_tree_constructed = true;
}
// constructs the search KD tree from interal primitives
template<typename Tr>
void AABB_tree<Tr>::construct_search_tree(void)
{
// iterate over primitives to get points on them
std::list<Point> points;
typename std::vector<Primitive>::const_iterator it;
for(it = m_data.begin(); it != m_data.end(); ++it)
{
points.push_back(it->reference_point());
}
m_search_tree.init(points.begin(), points.end());
m_search_tree_constructed = true;
}
template<typename Tr>
template<typename Query>
bool
AABB_tree<Tr>::do_intersect(const Query& query) const
{
typedef First_intersection_traits<Query> Traversal_traits;
Traversal_traits traversal_traits;
this->traversal(query, traversal_traits);
return traversal_traits.is_intersection_found();
}
template<typename Tr>
template<typename Query>
int
AABB_tree<Tr>::number_of_intersections(const Query& query) const
{
typedef Counting_traits<Query> Traversal_traits;
Traversal_traits traversal_traits;
this->traversal(query, traversal_traits);
return traversal_traits.intersection_number();
}
template<typename Tr>
template<typename Query, typename OutputIterator>
OutputIterator
AABB_tree<Tr>::all_intersected_primitives(const Query& query,
OutputIterator out) const
{
typedef Listing_primitive_traits<Query, OutputIterator> Traversal_traits;
Traversal_traits traversal_traits(out);
this->traversal(query, traversal_traits);
return out;
}
template<typename Tr>
template<typename Query, typename OutputIterator>
OutputIterator
AABB_tree<Tr>::all_intersections(const Query& query,
OutputIterator out) const
{
typedef Listing_intersection_traits<Query, OutputIterator> Traversal_traits;
Traversal_traits traversal_traits(out);
this->traversal(query, traversal_traits);
return out;
}
template<typename Tr>
template<typename Query>
bool
AABB_tree<Tr>::any_intersection(const Query& query,
Point_and_primitive& point_and_primitive) const
{
typedef First_intersection_traits<Query> Traversal_traits;
Traversal_traits traversal_traits;
this->traversal(query, traversal_traits);
point_and_primitive = traversal_traits.result();
return traversal_traits.is_intersection_found();
}
// squared distance with user-specified hint
template<typename Tr>
typename AABB_tree<Tr>::FT
AABB_tree<Tr>::squared_distance(const Point& query,
const Point& hint) const
{
Point closest = closest_point(query, hint);
return CGAL::squared_distance(query, closest);
}
// squared distance without user-specified hint
template<typename Tr>
typename AABB_tree<Tr>::FT
AABB_tree<Tr>::squared_distance(const Point& query) const
{
Point closest = closest_point(query);
return CGAL::squared_distance(query, closest);
}
// closest point with user-specified hint
template<typename Tr>
typename AABB_tree<Tr>::Point
AABB_tree<Tr>::closest_point(const Point& query,
const Point& hint) const
{
Distance_traits traversal_traits(query,hint);
this->traversal(query, traversal_traits);
return traversal_traits.projection();
}
// closest point without hint, the search KD-tree is queried for the
// first nearest neighbor point to get a hint
template<typename Tr>
typename AABB_tree<Tr>::Point
AABB_tree<Tr>::closest_point(const Point& query) const
{
// construct search KD-tree if needed
Point hint;
if(m_search_tree_constructed)
{
// pick nearest neighbor point as hint (fast)
hint = m_search_tree.nearest_point(query);
}
else
{
// pick first primitive reference point as hint (naive)
hint = m_data[0].reference_point();
}
return closest_point(query,hint);
}
} // end namespace CGAL
#endif // CGAL_AABB_TREE_H