mirror of https://github.com/CGAL/cgal
287 lines
4.6 KiB
C++
287 lines
4.6 KiB
C++
/*
|
|
*
|
|
* Template Numerical Toolkit (TNT)
|
|
*
|
|
* Mathematical and Computational Sciences Division
|
|
* National Institute of Technology,
|
|
* Gaithersburg, MD USA
|
|
*
|
|
*
|
|
* This software was developed at the National Institute of Standards and
|
|
* Technology (NIST) by employees of the Federal Government in the course
|
|
* of their official duties. Pursuant to title 17 Section 105 of the
|
|
* United States Code, this software is not subject to copyright protection
|
|
* and is in the public domain. NIST assumes no responsibility whatsoever for
|
|
* its use by other parties, and makes no guarantees, expressed or implied,
|
|
* about its quality, reliability, or any other characteristic.
|
|
*
|
|
*/
|
|
|
|
|
|
#ifndef CGAL_TNT_ARRAY2D_UTILS_H
|
|
#define CGAL_TNT_ARRAY2D_UTILS_H
|
|
#include <CGAL/PDB/basic.h>
|
|
#include <cstdlib>
|
|
#include <cassert>
|
|
|
|
CGAL_TNT_BEGIN_NAMESPACE
|
|
|
|
|
|
|
|
template <class T>
|
|
std::ostream& operator<<(std::ostream &s, const Array2D<T> &A)
|
|
{
|
|
int M=A.dim1();
|
|
int N=A.dim2();
|
|
|
|
s << M << " " << N << "\n";
|
|
|
|
for (int i=0; i<M; i++)
|
|
{
|
|
for (int j=0; j<N; j++)
|
|
{
|
|
s << A[i][j] << " ";
|
|
}
|
|
s << "\n";
|
|
}
|
|
|
|
|
|
return s;
|
|
}
|
|
|
|
template <class T>
|
|
std::istream& operator>>(std::istream &s, Array2D<T> &A)
|
|
{
|
|
|
|
int M, N;
|
|
|
|
s >> M >> N;
|
|
|
|
Array2D<T> B(M,N);
|
|
|
|
for (int i=0; i<M; i++)
|
|
for (int j=0; j<N; j++)
|
|
{
|
|
s >> B[i][j];
|
|
}
|
|
|
|
A = B;
|
|
return s;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
Array2D<T> operator+(const Array2D<T> &A, const Array2D<T> &B)
|
|
{
|
|
int m = A.dim1();
|
|
int n = A.dim2();
|
|
|
|
if (B.dim1() != m || B.dim2() != n )
|
|
return Array2D<T>();
|
|
|
|
else
|
|
{
|
|
Array2D<T> C(m,n);
|
|
|
|
for (int i=0; i<m; i++)
|
|
{
|
|
for (int j=0; j<n; j++)
|
|
C[i][j] = A[i][j] + B[i][j];
|
|
}
|
|
return C;
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
Array2D<T> operator-(const Array2D<T> &A, const Array2D<T> &B)
|
|
{
|
|
int m = A.dim1();
|
|
int n = A.dim2();
|
|
|
|
if (B.dim1() != m || B.dim2() != n )
|
|
return Array2D<T>();
|
|
|
|
else
|
|
{
|
|
Array2D<T> C(m,n);
|
|
|
|
for (int i=0; i<m; i++)
|
|
{
|
|
for (int j=0; j<n; j++)
|
|
C[i][j] = A[i][j] - B[i][j];
|
|
}
|
|
return C;
|
|
}
|
|
}
|
|
|
|
|
|
template <class T>
|
|
Array2D<T> operator*(const Array2D<T> &A, const Array2D<T> &B)
|
|
{
|
|
int m = A.dim1();
|
|
int n = A.dim2();
|
|
|
|
if (B.dim1() != m || B.dim2() != n )
|
|
return Array2D<T>();
|
|
|
|
else
|
|
{
|
|
Array2D<T> C(m,n);
|
|
|
|
for (int i=0; i<m; i++)
|
|
{
|
|
for (int j=0; j<n; j++)
|
|
C[i][j] = A[i][j] * B[i][j];
|
|
}
|
|
return C;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
Array2D<T> operator/(const Array2D<T> &A, const Array2D<T> &B)
|
|
{
|
|
int m = A.dim1();
|
|
int n = A.dim2();
|
|
|
|
if (B.dim1() != m || B.dim2() != n )
|
|
return Array2D<T>();
|
|
|
|
else
|
|
{
|
|
Array2D<T> C(m,n);
|
|
|
|
for (int i=0; i<m; i++)
|
|
{
|
|
for (int j=0; j<n; j++)
|
|
C[i][j] = A[i][j] / B[i][j];
|
|
}
|
|
return C;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
Array2D<T>& operator+=(Array2D<T> &A, const Array2D<T> &B)
|
|
{
|
|
int m = A.dim1();
|
|
int n = A.dim2();
|
|
|
|
if (B.dim1() == m || B.dim2() == n )
|
|
{
|
|
for (int i=0; i<m; i++)
|
|
{
|
|
for (int j=0; j<n; j++)
|
|
A[i][j] += B[i][j];
|
|
}
|
|
}
|
|
return A;
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
Array2D<T>& operator-=(Array2D<T> &A, const Array2D<T> &B)
|
|
{
|
|
int m = A.dim1();
|
|
int n = A.dim2();
|
|
|
|
if (B.dim1() == m || B.dim2() == n )
|
|
{
|
|
for (int i=0; i<m; i++)
|
|
{
|
|
for (int j=0; j<n; j++)
|
|
A[i][j] -= B[i][j];
|
|
}
|
|
}
|
|
return A;
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
Array2D<T>& operator*=(Array2D<T> &A, const Array2D<T> &B)
|
|
{
|
|
int m = A.dim1();
|
|
int n = A.dim2();
|
|
|
|
if (B.dim1() == m || B.dim2() == n )
|
|
{
|
|
for (int i=0; i<m; i++)
|
|
{
|
|
for (int j=0; j<n; j++)
|
|
A[i][j] *= B[i][j];
|
|
}
|
|
}
|
|
return A;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
Array2D<T>& operator/=(Array2D<T> &A, const Array2D<T> &B)
|
|
{
|
|
int m = A.dim1();
|
|
int n = A.dim2();
|
|
|
|
if (B.dim1() == m || B.dim2() == n )
|
|
{
|
|
for (int i=0; i<m; i++)
|
|
{
|
|
for (int j=0; j<n; j++)
|
|
A[i][j] /= B[i][j];
|
|
}
|
|
}
|
|
return A;
|
|
}
|
|
|
|
/**
|
|
Matrix Multiply: compute C = A*B, where C[i][j]
|
|
is the dot-product of row i of A and column j of B.
|
|
|
|
|
|
@param A an (m x n) array
|
|
@param B an (n x k) array
|
|
@return the (m x k) array A*B, or a null array (0x0)
|
|
if the matrices are non-conformant (i.e. the number
|
|
of columns of A are different than the number of rows of B.)
|
|
|
|
|
|
*/
|
|
template <class T>
|
|
Array2D<T> matmult(const Array2D<T> &A, const Array2D<T> &B)
|
|
{
|
|
if (A.dim2() != B.dim1())
|
|
return Array2D<T>();
|
|
|
|
int M = A.dim1();
|
|
int N = A.dim2();
|
|
int K = B.dim2();
|
|
|
|
Array2D<T> C(M,K);
|
|
|
|
for (int i=0; i<M; i++)
|
|
for (int j=0; j<K; j++)
|
|
{
|
|
T sum = 0;
|
|
|
|
for (int k=0; k<N; k++)
|
|
sum += A[i][k] * B [k][j];
|
|
|
|
C[i][j] = sum;
|
|
}
|
|
|
|
return C;
|
|
|
|
}
|
|
|
|
CGAL_TNT_END_NAMESPACE
|
|
#endif
|