mirror of https://github.com/CGAL/cgal
43 lines
1.2 KiB
C++
43 lines
1.2 KiB
C++
// example: construct a linear program from data
|
|
// the LP below is the first linear program example in the user manual
|
|
#include <iostream>
|
|
#include <cassert>
|
|
|
|
#include <CGAL/QP_models.h>
|
|
#include <CGAL/QP_functions.h>
|
|
|
|
// choose exact integral type
|
|
#ifdef CGAL_USE_GMP
|
|
#include <CGAL/Gmpz.h>
|
|
typedef CGAL::Gmpz ET;
|
|
#else
|
|
#include <CGAL/MP_Float.h>
|
|
typedef CGAL::MP_Float ET;
|
|
#endif
|
|
|
|
// program and solution types
|
|
typedef CGAL::Quadratic_program<int> Program;
|
|
typedef CGAL::Quadratic_program_solution<ET> Solution;
|
|
|
|
int main() {
|
|
// by default, we have a nonnegative LP with Ax <= b
|
|
Program lp (CGAL::SMALLER, true, 0, false, 0);
|
|
|
|
// now set the non-default entries
|
|
const int X = 0;
|
|
const int Y = 1;
|
|
lp.set_a(X, 0, 1); lp.set_a(Y, 0, 1); lp.set_b(0, 7); // x + y <= 7
|
|
lp.set_a(X, 1, -1); lp.set_a(Y, 1, 2); lp.set_b(1, 4); // -x + 2y <= 4
|
|
lp.set_u(Y, true, 4); // y <= 4
|
|
lp.set_c(Y, -32); // -32y
|
|
lp.set_c0(64); // +64
|
|
|
|
// solve the program, using ET as the exact type
|
|
Solution s = CGAL::solve_linear_program(lp, ET());
|
|
assert (s.solves_linear_program(lp));
|
|
|
|
// output solution
|
|
std::cout << s;
|
|
return 0;
|
|
}
|