mirror of https://github.com/CGAL/cgal
1562 lines
61 KiB
C++
1562 lines
61 KiB
C++
// Copyright (c) 2019-2023 GeometryFactory Sarl (France).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org).
|
|
// You can redistribute it and/or modify it under the terms of the GNU
|
|
// General Public License as published by the Free Software Foundation,
|
|
// either version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
// SPDX-License-Identifier: GPL-3.0+
|
|
//
|
|
// Author(s) : Laurent Rineau
|
|
|
|
#ifndef CGAL_CONSTRAINED_DELAUNAY_TRIANGULATION_3_H
|
|
#define CGAL_CONSTRAINED_DELAUNAY_TRIANGULATION_3_H
|
|
|
|
#include <CGAL/license/Triangulation_3.h>
|
|
|
|
#include <CGAL/Triangulation_vertex_base_3.h>
|
|
#include <CGAL/Triangulation_cell_base_3.h>
|
|
#include <CGAL/Triangulation_vertex_base_with_info_2.h>
|
|
#include <CGAL/Triangulation_face_base_with_info_2.h>
|
|
#include <CGAL/Base_with_time_stamp.h>
|
|
#include <CGAL/Constrained_Delaunay_triangulation_2.h>
|
|
#include <CGAL/Constrained_triangulation_plus_2.h>
|
|
#include <CGAL/Projection_traits_3.h>
|
|
|
|
#include <CGAL/boost/graph/Dual.h>
|
|
#include <CGAL/boost/graph/graph_traits_Triangulation_data_structure_2.h>
|
|
#include <CGAL/boost/graph/graph_traits_Constrained_Delaunay_triangulation_2.h>
|
|
#include <CGAL/boost/graph/IO/OFF.h>
|
|
#include <CGAL/Polygon_mesh_processing/orient_polygon_soup.h>
|
|
#include <CGAL/Polygon_mesh_processing/repair_polygon_soup.h>
|
|
#include <CGAL/Compact_container.h>
|
|
|
|
#include <CGAL/Mesh_3/io_signature.h>
|
|
|
|
#include <CGAL/Conforming_Delaunay_triangulation_3.h>
|
|
|
|
#include <boost/graph/filtered_graph.hpp>
|
|
#include <boost/graph/breadth_first_search.hpp>
|
|
#include <boost/optional.hpp>
|
|
#include <boost/dynamic_bitset.hpp>
|
|
|
|
#include <boost/container/flat_set.hpp>
|
|
#include <boost/unordered_map.hpp>
|
|
#include <boost/container/small_vector.hpp>
|
|
#include <boost/iterator/function_output_iterator.hpp>
|
|
|
|
#include <unordered_map>
|
|
#include <ranges>
|
|
#if __has_include(<format>)
|
|
# include <format>
|
|
# include <concepts>
|
|
#elif CGAL_DEBUG_CDT_3
|
|
# error "Compiler needs <format>"
|
|
#endif
|
|
|
|
namespace CGAL {
|
|
|
|
using CDT_3_face_index = int;
|
|
|
|
template <typename Gt, typename Vb = Triangulation_vertex_base_3<Gt> >
|
|
class Constrained_Delaunay_triangulation_vertex_base_3
|
|
: public Conforming_Delaunay_triangulation_vertex_base_3<Gt, Vb>
|
|
{
|
|
using Base = Conforming_Delaunay_triangulation_vertex_base_3<Gt, Vb>;
|
|
public:
|
|
bool original_point = false; // currently not used
|
|
|
|
// To get correct vertex type in TDS
|
|
template < class TDS3 >
|
|
struct Rebind_TDS {
|
|
typedef typename Vb::template Rebind_TDS<TDS3>::Other Vb3;
|
|
typedef Constrained_Delaunay_triangulation_vertex_base_3 <Gt, Vb3> Other;
|
|
};
|
|
|
|
using Base::Base;
|
|
|
|
static std::string io_signature() {
|
|
return Get_io_signature<Base>()();
|
|
}
|
|
};
|
|
|
|
template <typename Gt, typename Cb = Triangulation_cell_base_3<Gt> >
|
|
class Constrained_Delaunay_triangulation_cell_base_3
|
|
: public Cb
|
|
{
|
|
using Base = Cb;
|
|
std::array<CDT_3_face_index, 4> face_id = { -1, -1, -1, -1 };
|
|
std::array<void*, 4> facet_2d = {nullptr, nullptr, nullptr, nullptr};
|
|
|
|
public:
|
|
// To get correct cell type in TDS
|
|
template < class TDS3 >
|
|
struct Rebind_TDS {
|
|
typedef typename Cb::template Rebind_TDS<TDS3>::Other Cb3;
|
|
typedef Constrained_Delaunay_triangulation_cell_base_3 <Gt, Cb3> Other;
|
|
};
|
|
|
|
// Constructor
|
|
using Base::Base;
|
|
|
|
bool is_facet_constrained(int i) const { return face_id[unsigned(i)] >= 0; }
|
|
|
|
template <typename Facet_handle>
|
|
void set_facet_constraint(int i, CDT_3_face_index face_id,
|
|
Facet_handle facet_2d)
|
|
{
|
|
this->face_id[unsigned(i)] = face_id;
|
|
this->facet_2d[unsigned(i)] = static_cast<void*>(std::addressof(*facet_2d));
|
|
}
|
|
|
|
CDT_3_face_index face_constraint_index(int i) const {
|
|
return face_id[unsigned(i)];
|
|
}
|
|
|
|
template <typename CDT_2>
|
|
auto face_2 (const CDT_2& cdt, int i) const {
|
|
using Face = typename CDT_2::Face;
|
|
auto ptr = static_cast<Face*>(facet_2d[unsigned(i)]);
|
|
return cdt.tds().faces().iterator_to(*ptr);
|
|
}
|
|
|
|
static std::string io_signature() {
|
|
return Get_io_signature<Base>()() + "+(" + Get_io_signature<int>()()
|
|
+ ")[4]";
|
|
}
|
|
|
|
friend std::ostream&
|
|
operator<<(std::ostream& os,
|
|
const Constrained_Delaunay_triangulation_cell_base_3& c)
|
|
{
|
|
os << static_cast<const Base&>(c);
|
|
for( unsigned li = 0; li < 4; ++li ) {
|
|
if(IO::is_ascii(os)) {
|
|
os << " " << c.face_id[li];
|
|
} else {
|
|
CGAL::write(os, c.face_id[li]);
|
|
}
|
|
}
|
|
return os;
|
|
}
|
|
friend std::istream&
|
|
operator>>(std::istream& is,
|
|
Constrained_Delaunay_triangulation_cell_base_3& c)
|
|
{
|
|
is >> static_cast<Base&>(c);
|
|
if(!is) return is;
|
|
for( int li = 0; li < 4; ++li ) {
|
|
int i;
|
|
if(IO::is_ascii(is)) {
|
|
is >> i;
|
|
} else {
|
|
CGAL::read(is, i);
|
|
}
|
|
if(!is) return is;
|
|
c.face_id[li] = i;
|
|
}
|
|
return is;
|
|
}
|
|
};
|
|
|
|
template <typename T_3>
|
|
class Constrained_Delaunay_triangulation_3 : public Conforming_Delaunay_triangulation_3<T_3> {
|
|
public:
|
|
using Conforming_Dt = Conforming_Delaunay_triangulation_3<T_3>;
|
|
using Vertex_handle = typename T_3::Vertex_handle;
|
|
using Cell_handle = typename T_3::Cell_handle;
|
|
using Edge = typename T_3::Edge;
|
|
using Facet = typename T_3::Facet;
|
|
using Point_3 = typename T_3::Point;
|
|
using Segment_3 = typename T_3::Geom_traits::Segment_3;
|
|
using Vector_3 = typename T_3::Geom_traits::Vector_3;
|
|
using Locate_type = typename T_3::Locate_type;
|
|
using Geom_traits = typename T_3::Geom_traits;
|
|
|
|
using Face_index = CDT_3_face_index;
|
|
|
|
static std::string io_signature() {
|
|
return Get_io_signature<Conforming_Dt>()();
|
|
}
|
|
|
|
private:
|
|
struct CDT_2_types {
|
|
using Projection_traits = Projection_traits_3<Geom_traits>;
|
|
static_assert(std::is_nothrow_move_constructible<Projection_traits>::value,
|
|
"move cstr is missing");
|
|
|
|
struct Vertex_info {
|
|
Vertex_handle vertex_handle_3d = {};
|
|
};
|
|
|
|
using Color_value_type = std::int8_t;
|
|
struct Face_info {
|
|
Color_value_type is_outside_the_face = 0;
|
|
Color_value_type is_in_region = 0;
|
|
std::bitset<3> is_edge_also_in_3d_triangulation;
|
|
bool missing_subface = true;
|
|
};
|
|
using Vb1 = Triangulation_vertex_base_with_info_2<Vertex_info,
|
|
Projection_traits>;
|
|
using Vb = Base_with_time_stamp<Vb1>;
|
|
using Fb1 = Triangulation_face_base_with_info_2<Face_info,
|
|
Projection_traits>;
|
|
using Fb = Constrained_triangulation_face_base_2<Projection_traits, Fb1>;
|
|
using TDS = Triangulation_data_structure_2<Vb,Fb>;
|
|
using Itag = No_constraint_intersection_tag;
|
|
using CDT_base =
|
|
Constrained_Delaunay_triangulation_2<Projection_traits, TDS, Itag>;
|
|
using CDT = CDT_base;
|
|
|
|
template <Color_value_type Face_info::* member_ptr>
|
|
struct CDT_2_dual_color_map {
|
|
using category = boost::read_write_property_map_tag;
|
|
using reference = Color_value_type&;
|
|
using value_type = Color_value_type;
|
|
using key_type = typename CDT::Face_handle;
|
|
|
|
friend reference get(CDT_2_dual_color_map, key_type fh) {
|
|
return fh->info().*member_ptr;
|
|
}
|
|
friend void put(CDT_2_dual_color_map, key_type fh, value_type value) {
|
|
fh->info().*member_ptr = value;
|
|
}
|
|
};
|
|
using Color_map_is_outside_the_face =
|
|
CDT_2_dual_color_map<&Face_info::is_outside_the_face>;
|
|
using Color_map_is_in_region =
|
|
CDT_2_dual_color_map<&Face_info::is_in_region>;
|
|
}; // CDT_2_types
|
|
using CDT_2 = typename CDT_2_types::CDT;
|
|
using CDT_2_traits = typename CDT_2_types::Projection_traits;
|
|
using CDT_2_face_handle = typename CDT_2::Face_handle;
|
|
static_assert(std::is_nothrow_move_constructible<CDT_2>::value,
|
|
"move cstr is missing");
|
|
static_assert(std::is_nothrow_move_assignable<CDT_2>::value,
|
|
"move assignment is missing");
|
|
|
|
protected:
|
|
struct PLC_error {};
|
|
using Constraint_hierarchy = typename Conforming_Dt::Constraint_hierarchy;
|
|
using Constraint_id = typename Constraint_hierarchy::Constraint_id;
|
|
using Subconstraint = typename Constraint_hierarchy::Subconstraint;
|
|
|
|
class Insert_in_conflict_visitor {
|
|
Constrained_Delaunay_triangulation_3<T_3> &self;
|
|
typename Conforming_Dt::Insert_in_conflict_visitor conforming_dt_visitor;
|
|
|
|
public:
|
|
Insert_in_conflict_visitor(Constrained_Delaunay_triangulation_3 &self)
|
|
: self(self), conforming_dt_visitor(self) {}
|
|
|
|
template <class InputIterator>
|
|
void process_cells_in_conflict(const InputIterator cell_it_begin, const InputIterator end) {
|
|
CGAL_assertion(self.dimension() >= 2);
|
|
const int first_li = self.dimension() == 2 ? 3 : 0;
|
|
for(auto cell_it = cell_it_begin; cell_it != end; ++cell_it) {
|
|
auto c = *cell_it;
|
|
for(int li = first_li; li < 4; ++li) {
|
|
if(c->is_facet_constrained(li)) {
|
|
const auto face_id = static_cast<std::size_t>(c->face_constraint_index(li));
|
|
self.face_constraint_misses_subfaces.set(face_id);
|
|
auto fh_2 = c->face_2(self.face_cdt_2[face_id], li);
|
|
#if CGAL_DEBUG_CDT_3
|
|
std::cerr << "Add missing triangle (from visitor): \n";
|
|
self.write_2d_triangle(std::cerr, fh_2);
|
|
#endif // CGAL_DEBUG_CDT_3
|
|
|
|
fh_2->info().missing_subface = true;
|
|
}
|
|
}
|
|
}
|
|
conforming_dt_visitor.process_cells_in_conflict(cell_it_begin, end);
|
|
}
|
|
void after_insertion(Vertex_handle) {
|
|
|
|
}
|
|
|
|
void reinsert_vertices(Vertex_handle v) {
|
|
after_insertion(v);
|
|
}
|
|
Vertex_handle replace_vertex(Cell_handle c, int index,
|
|
const Point_3 &) const {
|
|
return c->vertex(index);
|
|
}
|
|
void hide_point(Cell_handle, const Point_3 &) const {}
|
|
};
|
|
|
|
public:
|
|
Vertex_handle insert(const Point_3 &p, Locate_type lt, Cell_handle c,
|
|
int li, int lj)
|
|
{
|
|
auto v = Conforming_Dt::insert_impl(p, lt, c, li, lj, insert_in_conflict_visitor);
|
|
Conforming_Dt::restore_Delaunay(insert_in_conflict_visitor);
|
|
return v;
|
|
}
|
|
|
|
Vertex_handle insert(const Point_3 &p, Cell_handle start = {}) {
|
|
Locate_type lt;
|
|
int li, lj;
|
|
|
|
Cell_handle c = tr.locate(p, lt, li, lj, start);
|
|
return insert(p, lt, c, li, lj);
|
|
}
|
|
|
|
Constraint_id insert_constrained_edge(Vertex_handle va, Vertex_handle vb)
|
|
{
|
|
return this->insert_constrained_edge_impl(va, vb, insert_in_conflict_visitor);
|
|
}
|
|
|
|
bool is_constrained(Facet f) const {
|
|
return f.first->is_facet_constrained(f.second);
|
|
}
|
|
|
|
template <typename Polygon>
|
|
CGAL_CPP20_REQUIRE_CLAUSE(
|
|
std::ranges::common_range<Polygon>
|
|
&& (std::is_convertible_v<std::ranges::range_value_t<Polygon>, Point_3>))
|
|
boost::optional<Face_index> insert_constrained_polygon(Polygon&& polygon) {
|
|
std::vector<Vertex_handle> handles;
|
|
handles.reserve(polygon.size());
|
|
boost::optional<Cell_handle> hint;
|
|
for(const auto& p : polygon) {
|
|
handles.push_back(this->insert(p, hint.value_or(Cell_handle{})));
|
|
hint = handles.back()->cell();
|
|
}
|
|
return insert_constrained_face(std::move(handles));
|
|
}
|
|
|
|
template <typename Vertex_handles>
|
|
CGAL_CPP20_REQUIRE_CLAUSE(
|
|
std::ranges::common_range<Vertex_handles>
|
|
&& (std::is_convertible_v<std::ranges::range_value_t<Vertex_handles>, Vertex_handle>))
|
|
boost::optional<Face_index> insert_constrained_face(Vertex_handles&& vertex_handles) {
|
|
using std::begin;
|
|
using std::endl;
|
|
const auto first_it = begin(vertex_handles);
|
|
const auto vend = end(vertex_handles);
|
|
const auto size = std::distance(first_it, vend);
|
|
if(size < 2) return {};
|
|
if(size == 2) {
|
|
this->insert_constrained_edge(*first_it, *std::next(first_it));
|
|
return {};
|
|
}
|
|
CGAL::Circulator_from_container<std::remove_reference_t<Vertex_handles>> circ{&vertex_handles};
|
|
const auto circ_end{circ};
|
|
auto& border = this->face_border.emplace_back();
|
|
do {
|
|
const auto va = *circ;
|
|
++circ;
|
|
const auto vb = *circ;
|
|
const auto c_id = this->constraint_from_extremities(va, vb);
|
|
if(c_id != Constraint_id{}) {
|
|
const bool constraint_c_id_is_reversed = true;
|
|
border.push_back(Face_edge{c_id, constraint_c_id_is_reversed});
|
|
} else {
|
|
const auto c_id = this->insert_constrained_edge(va, vb);
|
|
CGAL_assertion(c_id != Constraint_id{});
|
|
border.push_back(Face_edge{c_id});
|
|
}
|
|
} while(circ != circ_end);
|
|
|
|
const auto accumulated_normal = [&] {
|
|
const auto last_it = std::next(first_it, size - 1);
|
|
const auto &last_point = tr.point(*last_it);
|
|
|
|
auto &&traits = tr.geom_traits();
|
|
auto &&cross_product = traits.construct_cross_product_vector_3_object();
|
|
auto &&vector = traits.construct_vector_3_object();
|
|
auto &&sum_vector = traits.construct_sum_of_vectors_3_object();
|
|
|
|
Vector_3 accumulated_normal = vector(CGAL::NULL_VECTOR);
|
|
for (auto vit = first_it, next_it = std::next(first_it);
|
|
next_it != last_it; ++vit, ++next_it) {
|
|
accumulated_normal =
|
|
sum_vector(accumulated_normal,
|
|
cross_product(vector(last_point, tr.point(*vit)),
|
|
vector(last_point, tr.point(*next_it))));
|
|
}
|
|
if (accumulated_normal.z() < 0 ||
|
|
(accumulated_normal.z() == 0 && accumulated_normal.y() > 0) ||
|
|
(accumulated_normal.z() == 0 && accumulated_normal.y() == 0 &&
|
|
accumulated_normal.x() > 0)
|
|
)
|
|
{
|
|
accumulated_normal = - accumulated_normal;
|
|
}
|
|
return accumulated_normal;
|
|
}();
|
|
|
|
face_cdt_2.emplace_back(CDT_2_traits{accumulated_normal});
|
|
face_constraint_misses_subfaces.resize(face_cdt_2.size());
|
|
const auto polygon_contraint_id = static_cast<CDT_3_face_index>(face_cdt_2.size() - 1);
|
|
|
|
return polygon_contraint_id;
|
|
}
|
|
|
|
private:
|
|
void fill_cdt_2(CDT_2& cdt_2, CDT_3_face_index polygon_contraint_id)
|
|
{
|
|
const auto handles = [this, polygon_contraint_id]() {
|
|
std::vector<Vertex_handle> handles;
|
|
for(const auto& face_edge : this->face_border[polygon_contraint_id]) {
|
|
const auto c_id = face_edge.constraint_id;
|
|
const bool reversed = face_edge.is_reverse;
|
|
const auto v_begin = this->constraint_hierarchy.vertices_in_constraint_begin(c_id);
|
|
const auto v_end = this->constraint_hierarchy.vertices_in_constraint_end(c_id);
|
|
CGAL_assertion(std::distance(v_begin, v_end) >= 2);
|
|
auto va = *v_begin;
|
|
auto vb_it = v_end;
|
|
--vb_it;
|
|
auto vb = *vb_it;
|
|
if(reversed) {
|
|
using std::swap;
|
|
swap(va, vb);
|
|
}
|
|
if(handles.empty()) {
|
|
handles.push_back(va);
|
|
} else {
|
|
CGAL_assertion(handles.back() == va);
|
|
}
|
|
handles.push_back(vb);
|
|
}
|
|
CGAL_assertion(handles.front() == handles.back());
|
|
handles.pop_back();
|
|
return handles;
|
|
}();
|
|
|
|
CGAL::Circulator_from_container circ{&handles};
|
|
const auto circ_end{circ};
|
|
{ // create and fill the 2D triangulation
|
|
const auto first_2d = cdt_2.insert(tr.point(*circ));
|
|
first_2d->info().vertex_handle_3d = *circ;
|
|
auto previous_2d = first_2d;
|
|
do {
|
|
const auto va = *circ;
|
|
CGAL_assertion(previous_2d->info().vertex_handle_3d == va);
|
|
++circ;
|
|
const auto vb = *circ;
|
|
const auto c_id = this->constraint_from_extremities(va, vb);
|
|
if(c_id != Constraint_id{}) {
|
|
auto vit = this->constraint_hierarchy.vertices_in_constraint_begin(c_id);
|
|
auto v_end = this->constraint_hierarchy.vertices_in_constraint_end(c_id);
|
|
CGAL_assertion_code(const auto constraint_size = std::distance(vit, v_end);)
|
|
if(vit != v_end) {
|
|
const bool constraint_c_id_is_reversed = (*vit != va);
|
|
CGAL_assertion(*vit == (constraint_c_id_is_reversed ? vb : va));
|
|
if(++vit != v_end && vit != --v_end) {
|
|
CGAL_assertion(constraint_size == std::distance(vit, v_end) + 2);
|
|
CGAL_assertion(*v_end == (constraint_c_id_is_reversed ? va : vb));
|
|
if(constraint_c_id_is_reversed) {
|
|
using std::swap;
|
|
swap(vit, v_end);
|
|
--vit;
|
|
--v_end;
|
|
};
|
|
while(vit != v_end) {
|
|
auto vh_2d = cdt_2.insert(tr.point(*vit));
|
|
vh_2d->info().vertex_handle_3d = *vit;
|
|
#if CGAL_DEBUG_CDT_3
|
|
std::cerr << "cdt_2.insert_constraint ("
|
|
<< tr.point(previous_2d->info().vertex_handle_3d)
|
|
<< " , "
|
|
<< tr.point(vh_2d->info().vertex_handle_3d)
|
|
<< ")\n";
|
|
#endif // CGAL_DEBUG_CDT_3
|
|
cdt_2.insert_constraint(previous_2d, vh_2d);
|
|
previous_2d = vh_2d;
|
|
if(constraint_c_id_is_reversed) {
|
|
--vit;
|
|
} else {
|
|
++vit;
|
|
};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
auto vh_2d = circ == circ_end ? first_2d : cdt_2.insert(tr.point(vb));
|
|
if(circ != circ_end) {
|
|
vh_2d->info().vertex_handle_3d = vb;
|
|
}
|
|
#if CGAL_DEBUG_CDT_3
|
|
std::cerr << "cdt_2.insert_constraint ("
|
|
<< tr.point(previous_2d->info().vertex_handle_3d)
|
|
<< " , "
|
|
<< tr.point(vh_2d->info().vertex_handle_3d)
|
|
<< ")\n";
|
|
#endif // CGAL_DEBUG_CDT_3
|
|
cdt_2.insert_constraint(previous_2d, vh_2d);
|
|
previous_2d = vh_2d;
|
|
} while (circ != circ_end);
|
|
const auto cdt_2_dual_graph = dual(cdt_2.tds());
|
|
{ // Now, use BGL BFS algorithm to mark the faces reachable from
|
|
// an infinite face as `is_outside_the_face`.
|
|
// I use the fact that `white_color()` evaluates to 0, and
|
|
// `black_color()` to 4 (and thus to a true Boolean).
|
|
const boost::filtered_graph dual(cdt_2_dual_graph,
|
|
[](typename CDT_2::Edge edge) {
|
|
return false == edge.first->is_constrained(edge.second);
|
|
});
|
|
using Color_map = typename CDT_2_types::Color_map_is_outside_the_face;
|
|
boost::breadth_first_search(dual, cdt_2.infinite_vertex()->face(),
|
|
boost::color_map(Color_map()));
|
|
} // end of Boost BFS
|
|
#if CGAL_DEBUG_CDT_3
|
|
int counter = 0;
|
|
for(const auto fh: cdt_2.finite_face_handles()) {
|
|
if(!fh->info().is_outside_the_face) ++counter;
|
|
}
|
|
std::cerr << counter << " triangles(s) in the face\n";
|
|
#endif // CGAL_DEBUG_CDT_3
|
|
if(Algebraic_structure_traits<typename Geom_traits::FT>::Is_exact::value &&
|
|
!std::all_of(cdt_2.finite_face_handles().begin(), cdt_2.finite_face_handles().end(), [=](const auto fh) {
|
|
const auto p0 = cdt_2.point(fh->vertex(0));
|
|
const auto v1 = cdt_2.point(fh->vertex(1)) - p0;
|
|
const auto v2 = cdt_2.point(fh->vertex(2)) - p0;
|
|
return cross_product(cdt_2.geom_traits().normal(), cross_product(v1, v2)) == NULL_VECTOR;
|
|
}))
|
|
{
|
|
std::cerr << std::string("Polygon #") + std::to_string(polygon_contraint_id) +
|
|
" is not coplanar.\n";
|
|
}
|
|
} // end of the construction of the CDT_2
|
|
}
|
|
|
|
void search_for_missing_subfaces(CDT_3_face_index polygon_contraint_id)
|
|
{
|
|
const CDT_2& cdt_2 = face_cdt_2[polygon_contraint_id];
|
|
|
|
for(const auto fh: cdt_2.all_face_handles())
|
|
{
|
|
if(fh->info().is_outside_the_face) continue;
|
|
const auto v0 = fh->vertex(0)->info().vertex_handle_3d;
|
|
const auto v1 = fh->vertex(1)->info().vertex_handle_3d;
|
|
const auto v2 = fh->vertex(2)->info().vertex_handle_3d;
|
|
Cell_handle c;
|
|
int i, j, k;
|
|
if(!tr.is_facet(v0, v1, v2, c, i, j, k)) {
|
|
fh->info().missing_subface = true;
|
|
face_constraint_misses_subfaces.set(static_cast<std::size_t>(polygon_contraint_id));
|
|
#if CGAL_DEBUG_CDT_3
|
|
std::cerr << std::format("Missing triangle in polygon #{}:\n", polygon_contraint_id);
|
|
write_triangle(std::cerr, v0, v1, v2);
|
|
#endif // CGAL_DEBUG_CDT_3
|
|
} else {
|
|
fh->info().missing_subface = false;
|
|
const int facet_index = 6 - i - j - k;
|
|
c->set_facet_constraint(facet_index, polygon_contraint_id, fh);
|
|
if(tr.dimension() > 2) {
|
|
const auto [n, n_index] = tr.mirror_facet({c, facet_index});
|
|
n->set_facet_constraint(n_index, polygon_contraint_id, fh);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static auto region(const CDT_2& cdt_2, CDT_2_face_handle fh)
|
|
{
|
|
std::vector<CDT_2_face_handle> fh_region;
|
|
const auto cdt_2_dual_graph = dual(cdt_2.tds());
|
|
const boost::filtered_graph dual(
|
|
cdt_2_dual_graph,
|
|
[](auto edge) {
|
|
const auto face = edge.first;
|
|
const auto i = unsigned(edge.second);
|
|
return false == face->info().is_edge_also_in_3d_triangulation.test(i);
|
|
},
|
|
[](auto face_handle) { return false == face_handle->info().is_outside_the_face; });
|
|
boost::breadth_first_search(dual, fh,
|
|
boost::color_map(typename CDT_2_types::Color_map_is_in_region())
|
|
.visitor(boost::make_bfs_visitor(boost::write_property(
|
|
boost::typed_identity_property_map<CDT_2_face_handle>(),
|
|
std::back_inserter(fh_region), boost::on_finish_vertex()))));
|
|
CGAL_assertion(!fh_region.empty());
|
|
CGAL_assertion(fh == fh_region[0]);
|
|
return fh_region;
|
|
}
|
|
|
|
auto brute_force_border_3_of_region(const std::vector<CDT_2_face_handle>& fh_region) {
|
|
std::set<std::pair<Vertex_handle, Vertex_handle>> border_edges_set;
|
|
for(const auto fh: fh_region) {
|
|
for(int i = 0; i < 3; ++i) {
|
|
const auto va = fh->vertex(CDT_2::cw(i))->info().vertex_handle_3d;
|
|
const auto vb = fh->vertex(CDT_2::ccw(i))->info().vertex_handle_3d;
|
|
if(this->tds().is_edge(va, vb)) {
|
|
CGAL_assertion_code(const auto result =)
|
|
border_edges_set.insert(CGAL::make_sorted_pair(va, vb));
|
|
CGAL_assertion(result.second == true);
|
|
}
|
|
}
|
|
}
|
|
std::vector<Edge> border_edges;
|
|
border_edges.reserve(border_edges_set.size());
|
|
for(const auto& [va, vb]: border_edges_set) {
|
|
Cell_handle c;
|
|
int i, j;
|
|
CGAL_assume(this->tds().is_edge(va, vb, c, i, j));
|
|
border_edges.emplace_back(c, i, j);
|
|
}
|
|
#if CGAL_DEBUG_CDT_3
|
|
std::cerr << "region size is: " << fh_region.size() << "\n";
|
|
std::cerr << "region border size is: " << border_edges.size() << "\n";
|
|
#endif // CGAL_DEBUG_CDT_3
|
|
return border_edges;
|
|
}
|
|
|
|
struct Intersection_error : public std::runtime_error {
|
|
using Seg = typename Geom_traits::Segment_3;
|
|
using Tri = typename Geom_traits::Triangle_3;
|
|
Intersection_error(Seg s, Tri t, std::string what) : std::runtime_error(what), segment(s), triangle(t) {}
|
|
|
|
Seg segment;
|
|
Tri triangle;
|
|
};
|
|
|
|
int does_edge_intersect_region(Cell_handle cell, int index_vc, int index_vd,
|
|
const CDT_2& cdt_2, const auto& fh_region)
|
|
{
|
|
const auto vc = cell->vertex(index_vd);
|
|
const auto vd = cell->vertex(index_vc);
|
|
const auto pc = this->point(vc);
|
|
const auto pd = this->point(vd);
|
|
const typename Geom_traits::Segment_3 seg{pc, pd};
|
|
for(const auto fh_2d : fh_region) {
|
|
const auto t0 = cdt_2.point(fh_2d->vertex(0));
|
|
const auto t1 = cdt_2.point(fh_2d->vertex(1));
|
|
const auto t2 = cdt_2.point(fh_2d->vertex(2));
|
|
|
|
const auto opc = CGAL::orientation(t0, t1, t2, pc);
|
|
const auto opd = CGAL::orientation(t0, t1, t2, pd);
|
|
if(opc == CGAL::COPLANAR || opd == CGAL::COPLANAR || opc == opd) {
|
|
continue;
|
|
} else {
|
|
// otherwise the segment intersects the plane of the triangle
|
|
if(CGAL::orientation(pc, pd, t0, t1) != opc &&
|
|
CGAL::orientation(pc, pd, t1, t2) != opc &&
|
|
CGAL::orientation(pc, pd, t2, t0) != opc)
|
|
{
|
|
return static_cast<int>(opc);
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Given a region and a border edge of it, returns an edge in the link of the
|
|
// border edge that intersects the region.
|
|
// The returned edge has its first vertex above the region.
|
|
std::optional<Edge> search_first_intersection(CDT_3_face_index /*face_index*/,
|
|
const CDT_2& cdt_2,
|
|
const auto& fh_region,
|
|
const Edge border_edge)
|
|
{
|
|
const auto [c, i, j] = border_edge;
|
|
const Vertex_handle va_3d = c->vertex(i);
|
|
const Vertex_handle vb_3d = c->vertex(j);
|
|
auto cell_circ = this->incident_cells(c, i, j), end = cell_circ;
|
|
#if CGAL_DEBUG_CDT_3 > 32
|
|
std::ofstream dump_edges_around("dump_edges_around.polylines.txt");
|
|
dump_edges_around.precision(17);
|
|
#endif // CGAL_DEBUG_CDT_3
|
|
CGAL_assertion(cell_circ != nullptr);
|
|
do {
|
|
if(this->is_infinite(cell_circ)) {
|
|
continue;
|
|
}
|
|
const auto index_va = cell_circ->index(va_3d);
|
|
const auto index_vb = cell_circ->index(vb_3d);
|
|
const auto index_vc = this->next_around_edge(index_va, index_vb);
|
|
const auto index_vd = this->next_around_edge(index_vb, index_va);
|
|
#if CGAL_DEBUG_CDT_3 > 32
|
|
write_segment(dump_edges_around, cell_circ->vertex(index_vc), cell_circ->vertex(index_vd));
|
|
#endif
|
|
int cd_intersects_region = does_edge_intersect_region(cell_circ, index_vc, index_vd, cdt_2, fh_region);
|
|
if(cd_intersects_region == 1) {
|
|
return { Edge{cell_circ, index_vc, index_vd} };
|
|
}
|
|
if(cd_intersects_region == -1) {
|
|
return { Edge{cell_circ, index_vd, index_vc} };
|
|
}
|
|
} while(++cell_circ != end);
|
|
return {};
|
|
}
|
|
|
|
struct Next_face : std::logic_error { using std::logic_error::logic_error; };
|
|
|
|
static constexpr auto vertex_pair(Edge e) {
|
|
const auto [c, i, j] = e;
|
|
return std::pair<Vertex_handle, Vertex_handle>{c->vertex(i), c->vertex(j)};
|
|
}
|
|
|
|
auto construct_cavities(CDT_3_face_index face_index,
|
|
int region_count,
|
|
const CDT_2& cdt_2,
|
|
const auto& fh_region,
|
|
const auto& polygon_vertices,
|
|
Edge first_intersecting_edge)
|
|
{
|
|
// outputs
|
|
struct Outputs
|
|
{
|
|
std::vector<Edge> intersecting_edges;
|
|
std::set<Cell_handle> intersecting_cells;
|
|
std::set<Vertex_handle> vertices_of_upper_cavity;
|
|
std::set<Vertex_handle> vertices_of_lower_cavity;
|
|
std::set<Facet> facets_of_upper_cavity;
|
|
std::set<Facet> facets_of_lower_cavity;
|
|
} outputs{
|
|
{}, {}, {polygon_vertices.begin(), polygon_vertices.end()}, {polygon_vertices.begin(), polygon_vertices.end()},
|
|
{}, {}};
|
|
|
|
auto& [_, intersecting_cells, vertices_of_upper_cavity, vertices_of_lower_cavity,
|
|
facets_of_upper_cavity, facets_of_lower_cavity] = outputs;
|
|
|
|
auto& intersecting_edges = outputs.intersecting_edges;
|
|
|
|
// marker for already visited elements
|
|
std::set<Vertex_handle> visited_vertices;
|
|
std::set<std::pair<Vertex_handle, Vertex_handle>> visited_edges;
|
|
std::set<Cell_handle> visited_cells;
|
|
|
|
auto make__new_element_functor = [](auto& visited_set) {
|
|
return [&visited_set](auto e) {
|
|
const auto [_, not_already_visited] = visited_set.insert(e);
|
|
return not_already_visited;
|
|
};
|
|
};
|
|
|
|
auto new_vertex = make__new_element_functor(visited_vertices);
|
|
auto new_cell = make__new_element_functor(visited_cells);
|
|
auto new_pair_of_vertices = make__new_element_functor(visited_edges);
|
|
auto new_edge = [&new_pair_of_vertices](Vertex_handle v0, Vertex_handle v1) {
|
|
return new_pair_of_vertices(CGAL::make_sorted_pair(v0, v1));
|
|
};
|
|
|
|
intersecting_edges.push_back(first_intersecting_edge);
|
|
const auto [v0, v1] = vertex_pair(first_intersecting_edge);
|
|
(void)new_edge(v0, v1);
|
|
for(std::size_t i = 0; i < intersecting_edges.size(); ++i) {
|
|
const auto intersecting_edge = intersecting_edges[i];
|
|
const auto [v_above, v_below] = vertex_pair(intersecting_edge);
|
|
#if CGAL_DEBUG_CDT_3
|
|
std::cerr << std::format("restore_subface_region face index: {}, region #{}, Edge #{:6}: ({} , {})\n",
|
|
face_index, region_count, i,
|
|
IO::oformat(v_above, with_point),
|
|
IO::oformat(v_below, with_point));
|
|
#endif
|
|
CGAL_assertion(false == polygon_vertices.contains(v_above));
|
|
CGAL_assertion(false == polygon_vertices.contains(v_below));
|
|
if(new_vertex(v_above)) {
|
|
vertices_of_upper_cavity.insert(v_above);
|
|
}
|
|
if(new_vertex(v_below)) {
|
|
vertices_of_lower_cavity.insert(v_below);
|
|
}
|
|
auto facet_circ = this->incident_facets(intersecting_edge);
|
|
const auto facet_circ_end = facet_circ;
|
|
do { // loop facets around [v_above, v_below]
|
|
CGAL_assertion(false == this->is_infinite(*facet_circ));
|
|
const auto cell = facet_circ->first;
|
|
const auto facet_index = facet_circ->second;
|
|
CGAL_assertion_msg(!cell->is_facet_constrained(facet_index), "intersecting polygons!");
|
|
if(new_cell(cell)) {
|
|
intersecting_cells.insert(cell);
|
|
}
|
|
const auto index_v_above = cell->index(v_above);
|
|
const auto index_v_below = cell->index(v_below);
|
|
const auto index_vc = 6 - index_v_above - index_v_below - facet_index;
|
|
const auto vc = cell->vertex(index_vc);
|
|
if(polygon_vertices.contains(vc)) continue; // intersecting edges cannot touch the border
|
|
|
|
auto test_edge = [&](Vertex_handle v0, int index_v0, Vertex_handle v1, int index_v1, int expected) {
|
|
if(!new_edge(v0, v1)) return true;
|
|
int v0v1_intersects_region = does_edge_intersect_region(cell, index_v0, index_v1, cdt_2, fh_region);
|
|
if(v0v1_intersects_region != 0) {
|
|
if(v0v1_intersects_region != expected) {
|
|
throw PLC_error{};
|
|
}
|
|
// report the edge with first vertex above the region
|
|
if(v0v1_intersects_region < 0) {
|
|
std::swap(index_v0, index_v1);
|
|
}
|
|
intersecting_edges.emplace_back(cell, index_v0, index_v1);
|
|
return true;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
};
|
|
|
|
if(!test_edge(v_above, index_v_above, vc, index_vc, 1) &&
|
|
!test_edge(v_below, index_v_below, vc, index_vc, -1))
|
|
{
|
|
dump_triangulation();
|
|
dump_region(face_index, region_count, cdt_2);
|
|
{
|
|
std::ofstream out(std::string("dump_two_edges_") + std::to_string(face_index) + ".polylines.txt");
|
|
write_segment(out, Edge{cell, index_v_above, index_vc});
|
|
write_segment(out, Edge{cell, index_v_below, index_vc});
|
|
}
|
|
throw PLC_error{};
|
|
}
|
|
} while(++facet_circ != facet_circ_end);
|
|
#if CGAL_DEBUG_CDT_3
|
|
std::cerr << "intersecting_edges.size() = " << intersecting_edges.size() << '\n';
|
|
#endif
|
|
}
|
|
for(auto intersecting_edge: intersecting_edges) {
|
|
const auto [v_above, v_below] = vertex_pair(intersecting_edge);
|
|
|
|
auto cell_circ = this->incident_cells(intersecting_edge), end = cell_circ;
|
|
CGAL_assume(cell_circ != nullptr);
|
|
do {
|
|
const Cell_handle cell = cell_circ;
|
|
const auto index_v_above = cell->index(v_above);
|
|
const auto index_v_below = cell->index(v_below);
|
|
const auto cell_above = cell->neighbor(index_v_below);
|
|
const auto cell_below = cell->neighbor(index_v_above);
|
|
if(!intersecting_cells.contains(cell_above)) {
|
|
facets_of_upper_cavity.emplace(cell_above, cell_above->index(cell));
|
|
}
|
|
if(!intersecting_cells.contains(cell_below)) {
|
|
facets_of_lower_cavity.emplace(cell_below, cell_below->index(cell));
|
|
}
|
|
} while(++cell_circ != end);
|
|
}
|
|
return outputs;
|
|
}
|
|
|
|
template <typename Function>
|
|
static void visit_convex_hull_of_triangulation(const Constrained_Delaunay_triangulation_3& tr, Function f)
|
|
{
|
|
const auto inf_vh = tr.infinite_vertex();
|
|
tr.incident_cells(inf_vh, boost::make_function_output_iterator([&](Cell_handle c) {
|
|
const auto facet_index = c->index(inf_vh);
|
|
f(Facet{c, facet_index});
|
|
return true;
|
|
}));
|
|
}
|
|
|
|
static constexpr With_point_tag with_point{};
|
|
|
|
void restore_subface_region(CDT_3_face_index face_index, int region_count,
|
|
const CDT_2& cdt_2, const auto& fh_region)
|
|
{
|
|
const auto border_edges = brute_force_border_3_of_region(fh_region);
|
|
const auto polygon_vertices = [&]() {
|
|
std::set<Vertex_handle> vertices;
|
|
for(const auto& [c, i, j]: border_edges) {
|
|
vertices.insert(c->vertex(i));
|
|
vertices.insert(c->vertex(j));
|
|
}
|
|
return vertices;
|
|
}();
|
|
#if CGAL_DEBUG_CDT_3
|
|
std::cerr << "polygon_vertices.size() = " << polygon_vertices.size() << "\n";
|
|
for(auto v : polygon_vertices) {
|
|
std::cerr << std::format(" {:.6}\n", IO::oformat(v, with_point));
|
|
}
|
|
#endif
|
|
const Edge first_border_edge{border_edges[0]};
|
|
const auto found_edge_opt = search_first_intersection(face_index, cdt_2, fh_region, first_border_edge);
|
|
if(!found_edge_opt) {
|
|
{
|
|
dump_triangulation();
|
|
dump_region(face_index, region_count, cdt_2);
|
|
}
|
|
throw Next_face{"No segment found"};
|
|
}
|
|
CGAL_assertion(found_edge_opt != std::nullopt);
|
|
|
|
const auto first_intersecting_edge = *found_edge_opt;
|
|
auto cavities =
|
|
construct_cavities(face_index, region_count, cdt_2, fh_region, polygon_vertices, first_intersecting_edge);
|
|
auto& [intersecting_edges, intersecting_cells_vector, vertices_of_upper_cavity,
|
|
vertices_of_lower_cavity, facets_of_upper_cavity, facets_of_lower_cavity] = cavities;
|
|
|
|
const std::set<Cell_handle> intersecting_cells{intersecting_cells_vector.begin(), intersecting_cells_vector.end()};
|
|
const std::set<Point_3> polygon_points = [&](){
|
|
std::set<Point_3> polygon_points;
|
|
for(auto vh : polygon_vertices) {
|
|
polygon_points.insert(this->point(vh));
|
|
}
|
|
return polygon_points;
|
|
}();
|
|
|
|
auto is_facet_of_polygon = [&](const auto& tr, Facet f) {
|
|
const auto [c, facet_index] = f;
|
|
for(int i = 0; i < 3; ++i) {
|
|
const auto vh = c->vertex(T_3::vertex_triple_index(facet_index, i));
|
|
if(!polygon_points.contains(tr.point(vh))) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
};
|
|
|
|
#if CGAL_DEBUG_CDT_3
|
|
std::cerr << std::format("Cavity has {} cells and {} edges, "
|
|
"{} vertices in upper cavity and {} in lower, "
|
|
"{} facets in upper cavity and {} in lower\n",
|
|
intersecting_cells.size(),
|
|
intersecting_edges.size(),
|
|
vertices_of_upper_cavity.size(),
|
|
vertices_of_lower_cavity.size(),
|
|
facets_of_upper_cavity.size(),
|
|
facets_of_lower_cavity.size());
|
|
if(intersecting_cells.size() > 3 || intersecting_edges.size() > 1) {
|
|
std::cerr << "!! Interesting case !!\n";
|
|
dump_region(face_index, region_count, cdt_2);
|
|
{
|
|
std::ofstream out(std::string("dump_intersecting_edges_") + std::to_string(face_index) + "_" +
|
|
std::to_string(region_count) + ".polylines.txt");
|
|
out.precision(17);
|
|
for(auto edge: intersecting_edges) {
|
|
write_segment(out, edge);
|
|
}
|
|
}
|
|
dump_facets_of_cavity(face_index, region_count, "lower", facets_of_lower_cavity);
|
|
dump_facets_of_cavity(face_index, region_count, "upper", facets_of_upper_cavity);
|
|
}
|
|
#endif // CGAL_DEBUG_CDT_3
|
|
typename T_3::Vertex_handle_unique_hash_map map_cavity_vertices_to_ambient_vertices;
|
|
typename T_3::Vertex_handle_unique_hash_map map_lower_cavity_vertices_to_ambient_vertices;
|
|
|
|
#ifdef CGAL_DEBUG_CDT_3
|
|
std::cerr << "# upper cavity\n";
|
|
#endif // CGAL_DEBUG_CDT_3
|
|
const auto [upper_cavity_triangulation, nb_of_add_vertices_upper] =
|
|
triangulate_cavity(face_index, cdt_2, intersecting_cells, facets_of_upper_cavity,
|
|
map_cavity_vertices_to_ambient_vertices,
|
|
vertices_of_upper_cavity);
|
|
#ifdef CGAL_DEBUG_CDT_3
|
|
std::cerr << "# lower cavity\n";
|
|
#endif // CGAL_DEBUG_CDT_3
|
|
const auto [lower_cavity_triangulation, nb_of_add_vertices_lower] =
|
|
triangulate_cavity(face_index, cdt_2, intersecting_cells, facets_of_lower_cavity,
|
|
map_lower_cavity_vertices_to_ambient_vertices,
|
|
vertices_of_lower_cavity);
|
|
|
|
CGAL_assertion(std::all_of(fh_region.begin(), fh_region.end(), [&](auto fh) {
|
|
auto is_fh_facet_of = [this, fh](const auto& tr) -> std::optional<Facet> {
|
|
const auto v0 = fh->vertex(0)->info().vertex_handle_3d;
|
|
const auto v1 = fh->vertex(1)->info().vertex_handle_3d;
|
|
const auto v2 = fh->vertex(2)->info().vertex_handle_3d;
|
|
return this->vertex_triple_is_facet_of_other_triangulation(*this, v0, v1, v2, tr);
|
|
};
|
|
|
|
const bool test = is_fh_facet_of(upper_cavity_triangulation) && is_fh_facet_of(lower_cavity_triangulation);
|
|
if(!test) {
|
|
dump_region(face_index, region_count, cdt_2);
|
|
dump_3d_triangulation(face_index, region_count, "lower", lower_cavity_triangulation);
|
|
dump_3d_triangulation(face_index, region_count, "upper", upper_cavity_triangulation);
|
|
auto dump_facets_of_cavity_border = [&](CDT_3_face_index face_index, int region_count, std::string type,
|
|
const auto& cavity_triangulation) {
|
|
std::ofstream out(std::string("dump_plane_facets_of_region_") + std::to_string(face_index) + "_" +
|
|
std::to_string(region_count) + "_" + type + ".off");
|
|
std::ofstream other_out(std::string("dump_non_plane_facets_of_region_") + std::to_string(face_index) + "_" +
|
|
std::to_string(region_count) + "_" + type + ".off");
|
|
out.precision(17);
|
|
other_out.precision(17);
|
|
|
|
std::vector<Facet> border_faces;
|
|
std::vector<Facet> non_border_faces;
|
|
visit_convex_hull_of_triangulation(cavity_triangulation,
|
|
[&](Facet f) {
|
|
if(is_facet_of_polygon(cavity_triangulation, f))
|
|
border_faces.push_back(f);
|
|
else
|
|
non_border_faces.push_back(f);
|
|
});
|
|
CGAL_warning(!border_faces.empty());
|
|
write_facets(out, cavity_triangulation, border_faces);
|
|
write_facets(other_out, cavity_triangulation, non_border_faces);
|
|
};
|
|
dump_facets_of_cavity_border(face_index, region_count, "lower", lower_cavity_triangulation);
|
|
dump_facets_of_cavity_border(face_index, region_count, "upper", upper_cavity_triangulation);
|
|
throw Next_face{"missing facet in polygon"};
|
|
}
|
|
return test;
|
|
}));
|
|
|
|
#ifdef CGAL_DEBUG_CDT_3
|
|
std::cerr << "# glu the upper triangulation of the cavity\n";
|
|
|
|
if(nb_of_add_vertices_upper > 0 || nb_of_add_vertices_lower > 0)
|
|
{
|
|
std::cerr << std::format("!! Cavity has grown and not has {} cells and {} edges, "
|
|
"{} vertices in upper cavity and {} in lower, "
|
|
"{} facets in upper cavity and {} in lower\n",
|
|
intersecting_cells.size(),
|
|
intersecting_edges.size(),
|
|
vertices_of_upper_cavity.size(),
|
|
vertices_of_lower_cavity.size(),
|
|
facets_of_upper_cavity.size(),
|
|
facets_of_lower_cavity.size());
|
|
}
|
|
#endif // CGAL_DEBUG_CDT_3
|
|
|
|
typename T_3::Vertex_triple_Facet_map outer_map;
|
|
auto add_to_outer_map = [&outer_map](typename T_3::Vertex_triple vt, Facet f, std::string_view extra = {}) {
|
|
outer_map[vt] = f;
|
|
#ifdef CGAL_DEBUG_CDT_3
|
|
CGAL_assertion(vt.first != vt.second);
|
|
CGAL_assertion(vt.first != vt.third);
|
|
CGAL_assertion(vt.second != vt.third);
|
|
std::cerr << std::format("outer map: Adding {}triple ({:.6}, {:.6}, {:.6})\n", extra,
|
|
IO::oformat(vt.first, with_point),
|
|
IO::oformat(vt.second, with_point),
|
|
IO::oformat(vt.third, with_point));
|
|
#endif // CGAL_DEBUG_CDT_3
|
|
};
|
|
auto fill_outer_map_of_cavity = [&](const auto&, const auto& facets) {
|
|
for(auto f : facets) {
|
|
typename T_3::Vertex_triple vt = this->make_vertex_triple(f);
|
|
this->make_canonical_oriented_triple(vt);
|
|
add_to_outer_map(vt, f);
|
|
}
|
|
};
|
|
|
|
fill_outer_map_of_cavity(upper_cavity_triangulation, facets_of_upper_cavity);
|
|
|
|
auto add_pseudo_cells_to_outer_map = [&](const auto& tr, bool is_upper_cavity) {
|
|
std::vector<std::pair<Cell_handle, CDT_2_face_handle>> pseudo_cells;
|
|
for(auto f : tr.finite_facets()) {
|
|
if(!is_facet_of_polygon(tr, f))
|
|
continue;
|
|
const auto is_facet = facet_is_facet_of_cdt_2(tr, f, cdt_2);
|
|
if(!is_facet) continue; // we might be in a sliver in the plane of the polygon
|
|
const auto [fh_2d, reverse_orientation] = *is_facet;
|
|
|
|
const auto vt_aux = this->make_vertex_triple(f);
|
|
typename T_3::Vertex_triple vt(map_cavity_vertices_to_ambient_vertices[vt_aux.first],
|
|
map_cavity_vertices_to_ambient_vertices[vt_aux.second],
|
|
map_cavity_vertices_to_ambient_vertices[vt_aux.third]);
|
|
this->make_canonical_oriented_triple(vt);
|
|
if(reverse_orientation == is_upper_cavity) {
|
|
std::swap(vt.second, vt.third);
|
|
}
|
|
auto new_cell = this->tds().create_cell();
|
|
pseudo_cells.emplace_back(new_cell, fh_2d);
|
|
new_cell->set_vertices(vt.first, vt.second, vt.third, this->infinite_vertex());
|
|
CGAL_assertion(static_cast<bool>(facet_is_facet_of_cdt_2(*this, {new_cell, 3}, cdt_2)));
|
|
add_to_outer_map(vt, {new_cell, 3}, "extra ");
|
|
}
|
|
return pseudo_cells;
|
|
};
|
|
const auto pseudo_cells = add_pseudo_cells_to_outer_map(upper_cavity_triangulation, true);
|
|
|
|
auto inner_map_of_cavity = [&](const auto& tr) {
|
|
typename T_3::Vertex_triple_Facet_map inner_map;
|
|
auto add_facet_to_inner_map = [&](Facet f) {
|
|
const auto vt_aux = this->make_vertex_triple(f);
|
|
typename T_3::Vertex_triple vt(map_cavity_vertices_to_ambient_vertices[vt_aux.first],
|
|
map_cavity_vertices_to_ambient_vertices[vt_aux.third],
|
|
map_cavity_vertices_to_ambient_vertices[vt_aux.second]);
|
|
this->make_canonical_oriented_triple(vt);
|
|
#ifdef CGAL_DEBUG_CDT_3
|
|
CGAL_assertion(vt.first != vt.second);
|
|
CGAL_assertion(vt.first != vt.third);
|
|
CGAL_assertion(vt.second != vt.third);
|
|
std::cerr << std::format("inner map: Adding triple ({:.6}, {:.6}, {:.6})\n",
|
|
IO::oformat(vt.first, with_point),
|
|
IO::oformat(vt.second, with_point),
|
|
IO::oformat(vt.third, with_point));
|
|
#endif // CGAL_DEBUG_CDT_3
|
|
inner_map[vt] = f;
|
|
};
|
|
for(auto f : tr.finite_facets()) {
|
|
add_facet_to_inner_map(f);
|
|
add_facet_to_inner_map(this->mirror_facet(f));
|
|
}
|
|
return inner_map;
|
|
};
|
|
|
|
{
|
|
#ifdef CGAL_DEBUG_CDT_3
|
|
std::ofstream out("dump_upper_outer_map.off");
|
|
out.precision(17);
|
|
write_facets(out, *this, std::ranges::views::values(outer_map));
|
|
out.close();
|
|
#endif // CGAL_DEBUG_CDT_3
|
|
const auto upper_inner_map = inner_map_of_cavity(upper_cavity_triangulation);
|
|
|
|
this->copy_triangulation_into_hole(map_cavity_vertices_to_ambient_vertices,
|
|
std::move(outer_map),
|
|
upper_inner_map,
|
|
Emptyset_iterator{});
|
|
}
|
|
#ifdef CGAL_DEBUG_CDT_3
|
|
std::cerr << "# glu the lower triangulation of the cavity\n";
|
|
#endif // CGAL_DEBUG_CDT_3
|
|
|
|
map_cavity_vertices_to_ambient_vertices.clear();
|
|
map_cavity_vertices_to_ambient_vertices = std::move(map_lower_cavity_vertices_to_ambient_vertices);
|
|
|
|
outer_map.clear();
|
|
std::vector<std::pair<Facet, CDT_2_face_handle>> new_constrained_facets;
|
|
new_constrained_facets.reserve(pseudo_cells.size());
|
|
for(const auto [c, fh_2d] : pseudo_cells) {
|
|
const Facet f = this->mirror_facet({c, 3});
|
|
new_constrained_facets.emplace_back(f, fh_2d);
|
|
CGAL_assertion(static_cast<bool>(facet_is_facet_of_cdt_2(*this, f, cdt_2)));
|
|
auto vt = this->make_vertex_triple(f);
|
|
this->make_canonical_oriented_triple(vt);
|
|
add_to_outer_map(vt, f);
|
|
this->tds().delete_cell(c);
|
|
}
|
|
fill_outer_map_of_cavity(lower_cavity_triangulation, facets_of_lower_cavity);
|
|
{
|
|
const auto lower_inner_map = inner_map_of_cavity(lower_cavity_triangulation);
|
|
#ifdef CGAL_DEBUG_CDT_3
|
|
std::cerr << "outer_map:\n";
|
|
for(auto [vt, _] : outer_map) {
|
|
std::cerr << std::format(" {:.6}, {:.6}, {:.6})\n",
|
|
IO::oformat(vt.first, with_point),
|
|
IO::oformat(vt.second, with_point),
|
|
IO::oformat(vt.third, with_point));
|
|
}
|
|
std::ofstream out("dump_lower_outer_map.off");
|
|
out.precision(17);
|
|
write_facets(out, *this, std::ranges::views::values(outer_map));
|
|
out.close();
|
|
#endif // CGAL_DEBUG_CDT_3
|
|
this->copy_triangulation_into_hole(map_cavity_vertices_to_ambient_vertices, std::move(outer_map), lower_inner_map,
|
|
Emptyset_iterator{});
|
|
}
|
|
for(auto c : intersecting_cells) {
|
|
this->tds().delete_cell(c);
|
|
}
|
|
|
|
auto restore_markers = [&](Facet outside_facet) {
|
|
const auto [outside_cell, outside_face_index] = outside_facet;
|
|
const auto [cell, face_index] = this->mirror_facet(outside_facet);
|
|
if(outside_cell->is_facet_constrained(outside_face_index)) {
|
|
const auto poly_id = outside_cell->face_constraint_index(outside_face_index);
|
|
const auto f2d = outside_cell->face_2(cdt_2, outside_face_index);
|
|
cell->set_facet_constraint(face_index, poly_id, f2d);
|
|
}
|
|
};
|
|
|
|
std::for_each(facets_of_lower_cavity.begin(), facets_of_lower_cavity.end(), restore_markers);
|
|
std::for_each(facets_of_upper_cavity.begin(), facets_of_upper_cavity.end(), restore_markers);
|
|
|
|
for(const auto [f, f2d] : new_constrained_facets) {
|
|
const auto [c, i] = f;
|
|
c->set_facet_constraint(i, face_index, f2d);
|
|
if(tr.dimension() > 2) {
|
|
const auto [c2, i2] = this->mirror_facet(f);
|
|
c2->set_facet_constraint(i2, face_index, f2d);
|
|
}
|
|
f2d->info().missing_subface = false;
|
|
}
|
|
CGAL_assertion(this->T_3::Tr_Base::is_valid(true));
|
|
};
|
|
|
|
struct Oriented_face_of_cdt_2 {
|
|
CDT_2_face_handle fh;
|
|
bool reversed_orientation = false;
|
|
};
|
|
|
|
template <typename Tr>
|
|
static auto facet_is_facet_of_cdt_2(const Tr& tr, typename Tr::Facet f, const CDT_2& cdt_2)
|
|
-> std::optional<Oriented_face_of_cdt_2>
|
|
{
|
|
const auto [c, facet_index] = f;
|
|
const auto v0 = c->vertex(Tr::vertex_triple_index(facet_index, 0));
|
|
const auto v1 = c->vertex(Tr::vertex_triple_index(facet_index, 1));
|
|
const auto v2 = c->vertex(Tr::vertex_triple_index(facet_index, 2));
|
|
|
|
auto v = [&, hint = CDT_2_face_handle{}](const auto& p) mutable {
|
|
int i;
|
|
typename CDT_2::Locate_type lt;
|
|
const auto fh = cdt_2.locate(p, lt, i, hint);
|
|
CGAL_assume(lt == CDT_2::VERTEX);
|
|
hint = fh;
|
|
return fh->vertex(i);
|
|
};
|
|
|
|
const auto cdt_2_v0 = v(tr.point(v0));
|
|
const auto cdt_2_v1 = v(tr.point(v1));
|
|
const auto cdt_2_v2 = v(tr.point(v2));
|
|
|
|
CDT_2_face_handle fh;
|
|
const bool is_face = cdt_2.is_face(cdt_2_v0, cdt_2_v1, cdt_2_v2, fh);
|
|
if(is_face && fh->info().is_in_region != 0) {
|
|
const int index_v0 = fh->index(cdt_2_v0);
|
|
const bool reverse_orientation = (cdt_2_v2 == fh->vertex(T_3::ccw(index_v0)));
|
|
return Oriented_face_of_cdt_2{fh, reverse_orientation};
|
|
}
|
|
else
|
|
return std::nullopt;
|
|
}
|
|
|
|
template <typename Tr1, typename Tr2, typename Vertex_handle1>
|
|
static auto vertex_triple_is_facet_of_other_triangulation(
|
|
const Tr1& tr, Vertex_handle1 v0, Vertex_handle1 v1, Vertex_handle1 v2, const Tr2& other_tr)
|
|
-> std::optional<typename Tr2::Facet>
|
|
{
|
|
const auto p0 = tr.point(v0);
|
|
const auto p1 = tr.point(v1);
|
|
const auto p2 = tr.point(v2);
|
|
auto v = [&, hint = typename Tr2::Cell_handle{}](const auto& p) mutable {
|
|
int i, j;
|
|
Locate_type lt;
|
|
const auto c = other_tr.locate(p, lt, i, j, hint);
|
|
CGAL_assume(lt == T_3::VERTEX);
|
|
hint = c;
|
|
return c->vertex(i);
|
|
};
|
|
typename Tr2::Cell_handle c;
|
|
int i, j, k;
|
|
const bool ok = other_tr.is_facet(v(p0), v(p1), v(p2), c, i, j, k);
|
|
if(ok)
|
|
return {typename Tr2::Facet(c, 6 - i - j - k)};
|
|
else
|
|
return {std::nullopt};
|
|
};
|
|
|
|
template <typename Vertex_map>
|
|
auto triangulate_cavity([[maybe_unused]] CDT_3_face_index face_index,
|
|
const CDT_2& cdt_2,
|
|
std::set<Cell_handle> cells_of_cavity,
|
|
std::set<Facet>& facets_of_cavity_border,
|
|
Vertex_map& map_cavity_vertices_to_ambient_vertices,
|
|
std::set<Vertex_handle> vertices_of_cavity) ///@TODO: not deterministic
|
|
{
|
|
struct {
|
|
Constrained_Delaunay_triangulation_3 cavity_triangulation{};
|
|
std::size_t number_of_added_vertices = 0;
|
|
} result;
|
|
auto& cavity_triangulation = result.cavity_triangulation;
|
|
CGAL::Unique_hash_map<Vertex_handle, Vertex_handle> vertex_map;
|
|
|
|
auto insert_new_vertex = [&](Vertex_handle v, std::string_view extra = "") {
|
|
const auto cavity_v = cavity_triangulation.insert(this->point(v));
|
|
vertex_map[v] = cavity_v;
|
|
map_cavity_vertices_to_ambient_vertices[cavity_v] = v;
|
|
#ifdef CGAL_DEBUG_CDT_3
|
|
std::cerr << std::format("inserted {}cavity vertex {:.6} -> {:.6}\n",
|
|
extra,
|
|
IO::oformat(cavity_v, with_point),
|
|
IO::oformat(v, with_point));
|
|
#endif
|
|
++result.number_of_added_vertices;
|
|
return cavity_v;
|
|
};
|
|
|
|
for(const auto v : vertices_of_cavity) {
|
|
insert_new_vertex(v);
|
|
}
|
|
|
|
std::vector<Facet> missing_faces;
|
|
while(true) {
|
|
missing_faces.clear();
|
|
for(auto f : facets_of_cavity_border) {
|
|
if(cells_of_cavity.contains(f.first)) {
|
|
// internal facet, due to cavity growing
|
|
continue;
|
|
}
|
|
const auto [v0, v1, v2] = this->make_vertex_triple(f);
|
|
Cell_handle c;
|
|
int i, j, k;
|
|
if(!cavity_triangulation.is_facet(vertex_map[v0], vertex_map[v1], vertex_map[v2], c, i, j, k)) {
|
|
missing_faces.push_back(f);
|
|
}
|
|
}
|
|
if(missing_faces.empty()) {
|
|
break;
|
|
}
|
|
for(auto [cell, facet_index] : missing_faces) {
|
|
{
|
|
if(cell->is_facet_constrained(facet_index)) {
|
|
const auto polygon_contraint_id = cell->face_constraint_index(facet_index);
|
|
auto f2d = cell->face_2(cdt_2, facet_index);
|
|
f2d->info().missing_subface = true;
|
|
CGAL_assertion(polygon_contraint_id != face_index);
|
|
face_constraint_misses_subfaces.set(static_cast<std::size_t>(polygon_contraint_id));
|
|
}
|
|
auto [_, is_new_cell] = cells_of_cavity.insert(cell);
|
|
if(!is_new_cell)
|
|
continue;
|
|
}
|
|
const auto v3 = cell->vertex(facet_index);
|
|
auto [_, v3_is_new_vertex] = vertices_of_cavity.insert(v3);
|
|
if(v3_is_new_vertex) {
|
|
insert_new_vertex(v3, "extra ");
|
|
}
|
|
for(int i = 0; i < 3; ++i) {
|
|
Facet other_f{cell, this->vertex_triple_index(facet_index, i)};
|
|
Facet mirror_f = this->mirror_facet(other_f);
|
|
if(!cells_of_cavity.contains(mirror_f.first)) {
|
|
facets_of_cavity_border.insert(mirror_f);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
CGAL_assertion(std::all_of(facets_of_cavity_border.begin(), facets_of_cavity_border.end(), [&](const auto& f) {
|
|
const auto [v0, v1, v2] = this->make_vertex_triple(f);
|
|
Cell_handle c;
|
|
int i, j, k;
|
|
return cavity_triangulation.is_facet(vertex_map[v0], vertex_map[v1], vertex_map[v2], c, i, j, k);
|
|
}));
|
|
return result;
|
|
}
|
|
|
|
void restore_face(CDT_3_face_index face_index) {
|
|
const CDT_2& cdt_2 = face_cdt_2[face_index];
|
|
#if CGAL_DEBUG_CDT_3 > 64 && __has_include(<format>)
|
|
std::cerr << std::format("restore_face({}): CDT_2 has {} vertices\n", face_index, cdt_2.number_of_vertices());
|
|
#endif // CGAL_DEBUG_CDT_3
|
|
for(const auto& edge : cdt_2.finite_edges()) {
|
|
const auto fh = edge.first;
|
|
const auto i = edge.second;
|
|
const auto va_3d = fh->vertex(cdt_2.cw(i))->info().vertex_handle_3d;
|
|
const auto vb_3d = fh->vertex(cdt_2.ccw(i))->info().vertex_handle_3d;
|
|
const bool is_3d = this->tds().is_edge(va_3d, vb_3d);
|
|
#if CGAL_DEBUG_CDT_3 > 64 && __has_include(<format>)
|
|
std::cerr << std::format("Edge is 3D: {:6} ({} , {})\n",
|
|
is_3d,
|
|
IO::oformat(this->point(va_3d)),
|
|
IO::oformat(this->point(vb_3d)));
|
|
#endif // CGAL_DEBUG_CDT_3
|
|
CGAL_assertion(is_3d || !cdt_2.is_constrained(edge));
|
|
fh->info().is_edge_also_in_3d_triangulation[unsigned(i)] = is_3d;
|
|
const auto reverse_edge = cdt_2.mirror_edge(edge);
|
|
reverse_edge.first->info().is_edge_also_in_3d_triangulation[unsigned(reverse_edge.second)] = is_3d;
|
|
}
|
|
std::set<CDT_2_face_handle> processed_faces;
|
|
int region_count = 0;
|
|
for(const CDT_2_face_handle fh : cdt_2.finite_face_handles()) {
|
|
if(fh->info().is_outside_the_face) continue;
|
|
CGAL_assertion(tr.is_facet(fh->vertex(0)->info().vertex_handle_3d,
|
|
fh->vertex(1)->info().vertex_handle_3d,
|
|
fh->vertex(2)->info().vertex_handle_3d) ||
|
|
(fh->info().missing_subface == true));
|
|
if(false == fh->info().missing_subface) {
|
|
continue;
|
|
}
|
|
Cell_handle c;
|
|
int i, j, k;
|
|
if(tr.is_facet(fh->vertex(0)->info().vertex_handle_3d, fh->vertex(1)->info().vertex_handle_3d,
|
|
fh->vertex(2)->info().vertex_handle_3d, c, i, j, k))
|
|
{
|
|
const int facet_index = 6 - i - j - k;
|
|
c->set_facet_constraint(facet_index, face_index, fh);
|
|
if(tr.dimension() > 2) {
|
|
const auto [c2, i2] = this->mirror_facet({c, facet_index});
|
|
c2->set_facet_constraint(i2, face_index, fh);
|
|
}
|
|
fh->info().missing_subface = false;
|
|
continue;
|
|
}
|
|
if(processed_faces.contains(fh))
|
|
continue;
|
|
const auto fh_region = region(cdt_2, fh);
|
|
processed_faces.insert(fh_region.begin(), fh_region.end());
|
|
try {
|
|
restore_subface_region(face_index, region_count++, cdt_2, fh_region);
|
|
}
|
|
catch(Next_face& e) {
|
|
std::cerr << "ERROR: " << e.what() << " in sub-region " << (region_count - 1)
|
|
<< " of facet #" << face_index << '\n';
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
void recheck_constrained_Delaunay() {
|
|
for(int i = 0, end = face_constraint_misses_subfaces.size(); i < end; ++i) {
|
|
search_for_missing_subfaces(i);
|
|
}
|
|
}
|
|
|
|
void restore_constrained_Delaunay()
|
|
{
|
|
for(int i = 0, end = face_constraint_misses_subfaces.size(); i < end; ++i) {
|
|
CDT_2& cdt_2 = face_cdt_2[i];
|
|
fill_cdt_2(cdt_2, i);
|
|
search_for_missing_subfaces(i);
|
|
}
|
|
const auto npos = face_constraint_misses_subfaces.npos;
|
|
auto i = face_constraint_misses_subfaces.find_first();
|
|
while(i != npos) {
|
|
try {
|
|
restore_face(i);
|
|
face_constraint_misses_subfaces.reset(i);
|
|
}
|
|
catch(PLC_error&) {
|
|
std::cerr << std::string("ERROR: PLC error with face #") << std::to_string(face_index) + "\n";
|
|
}
|
|
i = face_constraint_misses_subfaces.find_first();
|
|
}
|
|
}
|
|
|
|
static void write_region_to_OFF(std::ostream& out, const CDT_2& cdt_2) {
|
|
out.precision(17);
|
|
auto color_fn = [](CDT_2_face_handle fh_2d) -> CGAL::IO::Color {
|
|
if(fh_2d->info().is_outside_the_face) return CGAL::IO::gray();
|
|
if(fh_2d->info().is_in_region) return CGAL::IO::red();
|
|
return CGAL::IO::green();
|
|
};
|
|
auto color_pmap = boost::make_function_property_map<CDT_2_face_handle>(color_fn);
|
|
CGAL::IO::write_OFF(out, cdt_2, CGAL::parameters::face_color_map(color_pmap));
|
|
}
|
|
|
|
void write_region(std::ostream& out, const auto& region)
|
|
{
|
|
for(const auto fh_2d : region) {
|
|
write_2d_triangle(out, fh_2d);
|
|
}
|
|
}
|
|
|
|
void write_3d_triangulation_to_OFF(std::ostream& out, const Constrained_Delaunay_triangulation_3& tr) {
|
|
write_facets(out, tr, tr.finite_facets());
|
|
}
|
|
|
|
void dump_3d_triangulation(CDT_3_face_index face_index,
|
|
int region_count,
|
|
std::string type,
|
|
const Constrained_Delaunay_triangulation_3& tr)
|
|
{
|
|
std::ofstream dump(std::string("dump_") + type + "_cavity_" + std::to_string(face_index) + "_" +
|
|
std::to_string(region_count) + ".off");
|
|
dump.precision(17);
|
|
write_3d_triangulation_to_OFF(dump, tr);
|
|
}
|
|
|
|
void dump_triangulation() const {
|
|
std::ofstream dump("dump.binary.cgal");
|
|
CGAL::IO::save_binary_file(dump, *this);
|
|
}
|
|
|
|
void dump_region(CDT_3_face_index face_index, int region_count, const CDT_2& cdt_2) {
|
|
std::ofstream dump_region(std::string("dump_region_") + std::to_string(face_index) + "_" +
|
|
std::to_string(region_count) + ".off");
|
|
write_region_to_OFF(dump_region, cdt_2);
|
|
}
|
|
|
|
void write_triangle(std::ostream &out,
|
|
Vertex_handle v0, Vertex_handle v1, Vertex_handle v2)
|
|
{
|
|
out.precision(17);
|
|
out << "4"
|
|
<< " " << tr.point(v0) << " " << tr.point(v1) << " " << tr.point(v2)
|
|
<< " " << tr.point(v0) << '\n';
|
|
}
|
|
|
|
static void write_segment(std::ostream &out, Point_3 p0, Point_3 p1)
|
|
{
|
|
out.precision(17);
|
|
out << "2" << " " << p0 << " " << p1 << '\n';
|
|
}
|
|
|
|
static void write_segment(std::ostream &out, Segment_3 seg) {
|
|
write_segment(out, seg.source(), seg.target());
|
|
}
|
|
|
|
void write_segment(std::ostream& out, Vertex_handle v0, Vertex_handle v1)
|
|
{
|
|
write_segment(out, tr.point(v0), tr.point(v1));
|
|
}
|
|
|
|
void write_segment(std::ostream& out, Edge edge) {
|
|
const auto [c, i, j] = edge;
|
|
write_segment(out, c->vertex(i), c->vertex(j));
|
|
}
|
|
|
|
template <typename ...Args>
|
|
void dump_segment(std::string filename, Args&& ...args)
|
|
{
|
|
std::ofstream out(filename);
|
|
out.precision(17);
|
|
write_segment(out, std::forward<Args>(args)...);
|
|
}
|
|
|
|
static void write_facets(std::ostream& out, const auto& tr, auto&& facets_range) {
|
|
const auto size = std::distance(facets_range.begin(), facets_range.end());
|
|
std::vector<typename Geom_traits::Point_3> points;
|
|
points.reserve(size * 3);
|
|
std::vector<std::array<std::size_t, 3>> facets;
|
|
facets.reserve(size);
|
|
|
|
for(std::size_t i = 0; const auto& [cell, facet_index] : facets_range) {
|
|
const auto v0 = cell->vertex(T_3::vertex_triple_index(facet_index, 0));
|
|
const auto v1 = cell->vertex(T_3::vertex_triple_index(facet_index, 1));
|
|
const auto v2 = cell->vertex(T_3::vertex_triple_index(facet_index, 2));
|
|
points.push_back(tr.point(v0));
|
|
points.push_back(tr.point(v1));
|
|
points.push_back(tr.point(v2));
|
|
facets.push_back({i, i+1, i+2});
|
|
i += 3;
|
|
}
|
|
CGAL::Polygon_mesh_processing::merge_duplicate_points_in_polygon_soup(points, facets);
|
|
CGAL::Polygon_mesh_processing::orient_polygon_soup(points, facets);
|
|
CGAL::IO::write_OFF(out, points, facets);
|
|
}
|
|
|
|
void dump_facets_of_cavity(CDT_3_face_index face_index, int region_count, std::string type, const auto& facets_range)
|
|
{
|
|
std::ofstream out(std::string("dump_facets_of_region_") + std::to_string(face_index) + "_" +
|
|
std::to_string(region_count) + "_" + type + ".off");
|
|
out.precision(17);
|
|
write_facets(out, *this, facets_range);
|
|
}
|
|
|
|
void write_2d_triangle(std::ostream &out, const CDT_2_face_handle fh)
|
|
{
|
|
const auto v0 = fh->vertex(0)->info().vertex_handle_3d;
|
|
const auto v1 = fh->vertex(1)->info().vertex_handle_3d;
|
|
const auto v2 = fh->vertex(2)->info().vertex_handle_3d;
|
|
write_triangle(out, v0, v1, v2);
|
|
}
|
|
|
|
void write_missing_subfaces_file(std::ostream& out) {
|
|
const auto npos = face_constraint_misses_subfaces.npos;
|
|
auto i = face_constraint_misses_subfaces.find_first();
|
|
while(i != npos) {
|
|
const CDT_2& cdt = face_cdt_2[i];
|
|
for(const auto fh: cdt.finite_face_handles()) {
|
|
if (false == fh->info().is_outside_the_face &&
|
|
true == fh->info().missing_subface)
|
|
{
|
|
write_2d_triangle(out, fh);
|
|
}
|
|
}
|
|
i = face_constraint_misses_subfaces.find_next(i);
|
|
}
|
|
}
|
|
|
|
/// @{
|
|
/// remove functions cannot be called
|
|
void remove(Vertex_handle) = delete;
|
|
void remove_cluster() = delete;
|
|
/// @}
|
|
|
|
protected:
|
|
T_3 &tr = *this;
|
|
Conforming_Dt &conforming_dt = *this;
|
|
Insert_in_conflict_visitor insert_in_conflict_visitor = {*this};
|
|
std::vector<CDT_2> face_cdt_2;
|
|
struct Face_edge {
|
|
Constraint_id constraint_id;
|
|
bool is_reverse = false;
|
|
};
|
|
std::vector<std::vector<Face_edge>> face_border;
|
|
boost::dynamic_bitset<> face_constraint_misses_subfaces;
|
|
};
|
|
|
|
} // end CGAL
|
|
|
|
#endif // CGAL_CONSTRAINED_DELAUNAY_TRIANGULATION_3_H
|